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BETA: This book is still in a beta status, meaning it is not done. At the moment I try to find a way to 

implement a working paging mechanism which is a little bit more flexible than the one in the 

“Step10beta” folder. This is the reason for me to publish this tutorial at the current state. If you have 

an idea how to get paging running (Including a heap and memory allocation algorithm feel free to 

contact me. You could be the reason for me to keep writing ☺ ).  
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I Writing an Operating System 

October, 2010 

www.jofre.de 

I.I Introduction 

I read a lot of stuff on the internet about Operating systems and came to the fantastic idea to write 

my own one. This is a little fictitious you might think. Of course it is! But although I was sure that it 

will be a hard piece of work I started making a structure and defined the working packages that will 

be included in the final – let us call it OS (Operating System) from now on – OS. 

One very good reason to convince me starting this task is that I – as many of you, too, I guess – learn 

by doing. As you will see I explain a chapter or a function and try to put the idea into code. So you 

can directly understand what I just explained. In my eyes this is the way that enables us all to learn 

easily and quickly. 

And now I have to pull the break. Of course, we will not write the perfect OS that is comparable to 

Windows or Linux. We will write a very short version that – in the end – works and shows the general 

aspects of such software.  

I promise in this book I will concentrate on the most important facts and I will leave out long 

explanations and historical facts. Whoever is interested in more details I recommend the book 

“Operating Systems – Design and Implementation” by Tannenbaum and Woodhull which is the Bible 

of all OS books. 

In this text you will often find hints which are a nice to have but are not directly belonging to the 

topic of operating systems
1
. 

Now, let us define what we will learn in this tutorial and what our OS is supposed to be able to. 

 

I.II Goal of this tutorial 

In this tutorial we will write a small operating system which should help you to learn the basic parts: 

- Boot loader – How do we tell our BIOS (basic input/output system) to boot our OS? 

- Kernel – Why is the kernel called “core” of an OS? How can we access and control resources 

such as memory or processors? 

o System calls – How can we enable programmers to use these resources easily and 

keep them away from accessing our hardware directly? 

o Process management – Which process gets how much time of the CPU (central 

processing unit) and how do processes communicate between each other? 

                                                           
1
 But I did spend time writing them so invest the few minutes and read them! :-) 



o File systems – How to write to hard disk / floppy disk? How do we know which space 

on the disk is free and which area is in use? What happens when high language 

procedures like “write” are used? 

o The shell – How do we communicate with our OS and how are commands parsed? 

How do I specify files or other processes as input / output of a process? 

o Devices – How do I access hardware such as my graphic card? 

Last but not least, you will learn to compile the code we write which is not very easy! I will show you 

how which tools we use and how we combine our commands to a batch file. 

Hint: All tools we use are free! 

I.III What do I need? 

I have made the decision that use Windows to write the OS. If you are using Linux do not panic! Equal 

tools are available under Linux, too. All you need is an assembler, a C compiler, a virtual machine, 

GRUB (Grand Unified Bootloader) and some disk tools. 

- Assembler - The entrance code to our kernel is written in assembler and – unfortunately – 

cannot be written in C
2
. I decided to work with NASM (Netwide Assembler) which can be 

downloaded for free here: http://www.nasm.us/ 

Hint: There are different assemblers which are not compatible between each other. Whoever tried 

to compile a GAS-Assembler file with NASM will know that the expressions in the language differ a 

lot. For this tutorial I have chosen NASM because it is easy to read and well documented. 

- C compiler - The rest of our code is written in C. This code will be compiled using DJGPP 

which can be downloaded here: http://www.delorie.com/djgpp/zip-picker.html 

Hint: Installing DJGPP is a little tricky because there is no installer that let you choose the needed 

components. You have to download each package on its one and unzip it into a single directory. 

Hint: If you are installing DJGPP pay attention that you add the necessary paths
3
 of the bin directory 

in your system path dir.  This enables your BAT-file to find the applications we are using without 

entering entire paths. The same holds for NASM! 

 

- The Virtual Machine - As a Virtual Machine you can take probably every Tool you like. I have 

chosen Virtual PC because it is easy to use and I believe it is a little faster than for instance 

VM Ware and does not create some weird network connections that slow down your system. 

Furthermore, it is able to create Virtual Floppy Disk Images.  

- RawWrite - Helps you to copy images to that we create later onto a (virtual) floppy disc. This 

tool can be found here: http://www.chrysocome.net/rawwrite 

                                                           
2
 Defining our stack as well as defining interrupts is easier in assembler if not impossible in C. 

3
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- Virtual Floppy Drive - If you have no floppy drive of if you want to work with a virtual 

machine you will need to download VFD (Virtual Floppy Drive): 

http://sourceforge.net/projects/vfd/ 

- GRUB4DOS - This is the simple boot manager to load our kernel. It is very easy to use and we 

do not need to write an own boot loader! http://download.gna.org/grub4dos/  

- Build Floppy Image - A simple tool that can create floppy images that can be written  on 

(virtual) floppy disks: http://www.nu2.nu/bfi/  

- A good text editor, I propose Notepad++ which has code highlighting for nearly every 

language that is available on earth. http://notepad-plus-plus.org/ 

- Coffee 

As you can see we are using a lot of different tools (8!) but be aware that you will need some of them 

only when it comes to compiling. Most time you will spend with Notepad++ :-) 

 

I.IV Structure of this tutorial 

In the following paragraphs I will show you the code that is newly added to the OS. At the end I will 

tell you the lines that are added to our compilation batch file so that you can test our output 

immediately. The code of each chapter can be found in an archive that is called like the chapter. This 

helps you to avoid typos in your code or if you want to skip a chapter you can easily take the code 

from the current archive. I will add a lot of comments to the code so that I try to avoid explanations 

afterwards. 

Technically seen we will move from left to right as seen in illustration 1. First, we will see how a boot 

loader works and create a dynamic image that we only need to copy our kernel on.  Afterwards, we 

will create the entry point to the kernel in assembler.  This assembler code now calls a main function 

that you might now from a standard C program. Now that our kernel is running and waiting for 

orders we can create other programs that can be run on our system. These programs use system 

calls to use the resources of the hardware. System calls are a set of functions we will offer to 

programmers to build an abstraction layer between hardware and software.  

 

Image 1: Structure of the Operation System 



I.V Compiling 

In my eyes, compiling is a tricky part, especially under Windows because Linux has many tool 

preinstalled when it comes to compiling and creating images. When you have installed all the tools 

mentioned above it is time to create a batch file that compiles our code. 

@echo off 

echo Assembling... 

nasm -f aout -o start.o start.asm 

echo Done! 

echo Compiling... 

rem -> More to come here 

echo Done! 

echo .. and Linking! 

 ld -T link.ld -o kernel.bin start.o 

echo Done! 

pause 

Listing 1: Compilation Script „build.bat“ 

As you can see we process our compilation in 4 steps. 

1) Assembling our assembly code which is basically the entry point to our OS.  This code cannot 

be written in C this is why we have to use a (rather short) piece of assembler code. 

2) Compiling the C code. This will be done by DJGPP’s GCC. For each source and header file we 

add we have to add a line to the batch file. 

3) Linking the object files. The compiler produces so called object files with the extension .o. 

These files will have to be linked to a binary file, in our case “kernel.bin”. This will be done by 

DJGPP’s linker called “ld”. Similar to step 2 each object file that is created by the GCC has to 

be added to the linker. 

4) Finally we will have to copy the “kernel.bin” to a floppy disk that is prepared with our boot 

manager GRUB. This step is explained in detail in chapter XX. 

Hint: If the batch file tells you that either “nasm”, “gcc” or “ld” is an unrecognized command you will 

have to check if you added the necessary directories to your class path AND rebooted your system. 

I.VI What is an operating system? 

An OS can be characterized by two abilities. It extends our computer by separating hardware from 

software and it manages its resources. 

- An OS separates the Hardware Layer from the Application Layer. When a programmer 

writes a tool like the Notepad he does not want to care about free memory, free RAM, 



determining and writing to free hard disc sectors. These tasks will be done by the OS by so 

called
4
 system calls which extend our machine. 

- An OS manages resources. Computers consist of processors, memories, timers, disks, mice, 

network interfaces, and printers etc. Tasks of an Operating System are to manage the 

allocation of processors, memory and IO devices. 

But what about process management, file management, a user system and the shell? Of course, 

these are all parts of an OS but each topic that you can image can be put under the two topics above. 

I.VII Copyright 

If you want to publish parts of this book, do it! But please contact me (I want to know if the time I 

spent writing this tutorial was worth it) and give credits. That would be great. Thanks. 

 

1 The boot loader 

Each operating system needs an entry point that is recognized by the bios and says “Hey, I can 

provide a bootable binary!”. This entry point is called boot loader and has a very typical structure so 

that it is recognized as such: 

- It is (at least) 512 bytes long 

- It ends with the signature 055h, 0AAh on the last two bytes 

Hint: A boot loader can theoretically be bigger than 512 bytes. The most important thing is that the 

bytes at position 511 (055h) and position 512 (0AAh) are correct. 

To train our assembler skill we could write this piece of code on our own but on the one hand this is a 

tricky process because you can easily make mistakes in assembler and on the other hand there is an 

easy to apply out of the box boot loader that is, furthermore, free to use: The Grand Unified 

Bootloader (GRUB). 

Hint: If you are interested in a professionally written boot loader have a look at the one of the free 

and open source Minix OS. There even exists a tutorial on how its boot process works in detail
5
. 

Maybe you already heard about GRUB and want to know how this fine software works. This is easy, 

we will create a floppy disk image, put copy a file from the GRUB archive on it, create a simple 

configuration file, use a tool to make our image bootable and copy our binary file that contains our 

kernel on it. 

This image can then be written on a (virtual) floppy disk and when we then start our computer we 

will see a nice boot screen which let us pick the OS we want to boot. 

To build a boot image we need two tools: 
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 In chapter XX we will learn more about system calls. 
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- BFI (Build floppy image) 

- GRUB4DOS 

Let us create the image: 

1) Create a folder named “floppy” and put the file “grldr” from the GRUB archive in it. 

2) Execute BFI with the following parameters: 

bfi -t=144 -f=floppy.img floppy 

This creates us a 1.44 MB image called floppy.img and takes the folder “floppy” as source. 

3) Now we install GRUB on the image and make it bootable: 

bootlace.com --fat12 --floppy floppy.img 

4) Write the “floppy.img” onto a (virtual) floppy disk by using RawWrite. Now open the disk and 

create a new file called “menu.lst”. This is where GRUB reads the operating systems from 

when it is booted. 

5) Write these three lines in “menu.lst”: 

title My first OS 

kernel /kernel.bin 

boot 

The title is the string that is shown in the OS selection dialog, kernel is the absolute path to 

the kernel binary that we will start to create in chapter 1 and boot tells GRUB that he should 

boot the kernel when our OS is selected. 

I will include the “floppy.img” in the archive so that you can use it. 

Next, start Virtual Floppy Drive (VFD) and start the driver. 



 

Image 2: Starting the VFD driver 

Then you select the „Drive0“ tab and open a virtual floppy disk which can be found in each “step” 

folder (but is always the same). Assign a drive letter on top of the screen. I will use A: in this tutorial. 

 

Image 3: Open a virtual floppy disk 

You will see that you have a working floppy drive that you can use now. If you want you can close 

VFD. Once the driver is running it will not stop until you reboot your system. 

Now, you can start VirtualPC. Click „Floppy Disk“ in the main menu, select „Control physical drive A:“. 

The Virtual Machine will recognize you virtual drive „A:“ as own drive so that you can boot from it.  



Hint: When you want to use the „img1.vfd“ in VirtualPC instead of a virtual floppy drive you need to 

start „VFD Control Panel“, select the tab „Drive0“ and „Save…“ the content of your drive „A:“ to the 

„img1.vfd“. 

Hint: You will also have to create a virtual system. Therefore, a HDD size of 64 mb and a RAM size of 

64 mb is more than sufficient. 

Illustration 4 shows what your screen should look like when you boot from your floppy disk. 

 

Image 4: GRUB showing our kernel 

2 The entry to our OS 

Now we finally write code! 

; This is our entry point. As mentioned in this tut orial we write this 
code in assembler  
; since it is easier to define our stack here and t o mark this file as 
bootable binary for  
; GRUB.  
 
; We are moving in a 32 bits environment.  
[BITS  32] 
global  start 
start : 
    mov esp, _sys_stack     ; This points the stack to our new stack area  
    jmp stublet 
 
; This part MUST be 4byte aligned so that GRUB can read the magic number 
(boot signature),  
; the flags and the checksum.  
ALIGN 4 
 
; This part is to make our kernel GRUB compatible a nd tell grub some 
flags, for  
; instance that we use the AOUT binary format inste ad of ELF. This is 
neccessary  
; because we use DJGPP under Windows.  



mboot : 
    ; Multiboot macros to make a few lines later more r eadable  
    MULTIBOOT_PAGE_ALIGN equ  1<<0 
    MULTIBOOT_MEMORY_INFO equ  1<<1 
    MULTIBOOT_AOUT_KLUDGE equ  1<<16 
    MULTIBOOT_HEADER_MAGIC equ  0x1BADB002 
    MULTIBOOT_HEADER_FLAGS equ  MULTIBOOT_PAGE_ALIGN | 
MULTIBOOT_MEMORY_INFO | MULTIBOOT_AOUT_KLUDGE 
    MULTIBOOT_CHECKSUM equ  -(MULTIBOOT_HEADER_MAGIC + 
MULTIBOOT_HEADER_FLAGS) 
 ; Extern tells the compiler that the label can be f ound in another 
module.  
    EXTERN code , bss , end  
 
    dd MULTIBOOT_HEADER_MAGIC 
    dd MULTIBOOT_HEADER_FLAGS 
    dd MULTIBOOT_CHECKSUM 
     
    ; When we build our kernel the assembler fills thes e values 
automatically.  
 ; For mboot the address of the "mboot" label is set . This is to show 
GRUB 
 ; where it can find which section.  
    dd mboot 
    dd code 
    dd bss 
    dd end  
    dd start 
 
; Everything is defined properly. Now we can start our main loop in 
assembler.  
stublet : 
    jmp $ 
 
 
; Place holder for GDT code.  
 
 
; Place holder for interrupt code.  
 
 
; The bss section holds data that is not jet define d. For example, a "dd"  
; would be ignored by the compiler.  
; Now we define our stack of 8KB. Remember that a s tack actually grows  
; downwards, so we declare the size of the data bef ore declaring  
; the identifier '_sys_stack'  
SECTION .bss 
    resb  8192  ;reserve 8KB  
_sys_stack : 
Listing 2: The kernel called "start.asm" 

What we do here is easy: 

1) We save a pointer to our stack (What is a stack?
6
) in the ESP register. 

2) We define a lot of macros to enable multi booting for our OS in GRUB. 
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can be accessed via push (write) and pop (read). More on stacks can be found here: 

http://en.wikipedia.org/wiki/Stack_%28data_structure%29  



3) We define an endless loop that keeps our OS alive. 

4) We define our stack. 

What does our OS do so far? Nothing :-) But if you compile the code from the folder “Step 1” by 

clicking the batch file “build.bat” and following the last 2 steps from the chapter “Compiling” you will 

see that the image is recognized as Operating System and you can boot from a disk if you try. 

2.1 Entering the world of C 

For now, this is all the assembler code we need. The next parts can be realized using C code. Later, 

when it comes to interrupts we will have to switch back to assembler again.  

What we do now is we declare an extern function “_main” and call it. Therefore, add the following 

two lines beneath the line “stublet:”. 

stublet : 
    extern  _main 
    call _main 
    jmp $ 
Listing 3: Calling our main method 

Hint: It is not necessary to call the entry function to our C code “main”. I have only chosen this name 

because C programmers might be used to this name and see it as entry point to a program and so to 

our OS. 

Now that we have called the function we have to define it! Create a new file “main.c” and fill it with 

the following functions. 

Hint: The underscore in “_main” is there because the compiler adds a “_” to every function and 

variable declaration.  This is to avoid naming conflicts. 

#include <system.h> 
 
// copy count bytes from src to dest 
void  *memcpy(void  *dest , const  void  *src , size_t count ) 
{ 
    const  char  *sp = (const  char  *)src ; 
    char  *dp = (char  *)dest ; 
    for(; count != 0; count --) *dp++ = *sp++; 
    return dest ; 
} 
 
// set count bytes in dest to val 
void  *memset(void  *dest , char  val , size_t count ) 
{ 
    char  *temp = (char  *)dest ; 
    for( ; count != 0; count --) *temp++ = val ; 
    return dest ; 
} 
 
// Same as above, but this time, we're working with  a 16-bit 'val' and 
dest pointer. 
unsigned  short  *memsetw(unsigned  short  *dest , unsigned  short  val , size_t 
count ) 
{ 
    unsigned  short  *temp = (unsigned  short  *)dest ; 



    for( ; count != 0; count --) *temp++ = val ; 
    return dest ; 
} 
 
// Returns the length of a character array. 
size_t strlen (const  char  *str ) 
{ 
    size_t retval ; 
    for(retval = 0; *str != '\0' ; str ++) retval ++; 
    return retval ; 
} 
 
// Reading from IO ports 
unsigned  char  inportb (unsigned  short  _port ) 
{ 
    unsigned  char  rv ; 
    __asm__ __volatile__ ("inb %1, %0"  : "=a"  (rv ) : "dN"  (_port )); 
    return rv ; 
} 
 
// Writing to IO ports 
void  outportb (unsigned  short  _port , unsigned  char  _data ) 
{ 
    __asm__ __volatile__ ("outb %1, %0"  : : "dN"  (_port ), "a"  (_data )); 
} 
 
// The main function loops for eternity. This is to  keep our OS alive. 
int  main () 
{ 
    for (;;); 
    return(0); 
} 

Listing 4: Our first C file "main.c" 

Well, here does not jet happen a lot. From our “start.asm” we call “main” which ends up in an 

endless loop. The functions we defined are very basic functions to set memory and read and write to 

ports. To make them available in all coming source files we need to define the function headers in a 

header file. We create a “system.h” in a subdirectory called “Include”. 

#ifndef __SYSTEM_H 
#define __SYSTEM_H 
 
/* MAIN.C */  
extern  void  *memcpy(void  *dest , const  void  *src , size_t count ); 
extern  void  *memset(void  *dest , char  val , size_t count ); 
extern  unsigned  short  *memsetw(unsigned  short  *dest , unsigned  short  val , 
size_t count ); 
extern  size_t strlen (const  char  *str ); 
extern  unsigned  char  inportb (unsigned  short  _port ); 
extern  void  outportb (unsigned  short  _port , unsigned  char  _data ); 
 
#endif  

Listing 5: Header file "system.h" 

Hint: If you are not firm with the language C you will want to know what header files are. Header files 

tell the compiler which functions will later on be defined in our source code and what they will look 



like. The “#ifndef … #define … #endif” construct makes sure that each header file is only included 

once
7
. 

In this second step we succeeded in calling a c function in our OS! Many of you will get really exited 

now because they think “Hey, now I can do anything a can do under my preferred OS!”. Actually, this 

is wrong. As you can see we defined functions like memcpy, a very basic function in C. All other 

functions we will have to write on our own now. Even printing on the screen is not possible so far 

using the functions we have at the moment. But this will change in the next chapter. 

Now we have to extend our compiler script! Add the following line directly after “echo Compiling…”. 

gcc -Wall -O -fstrength-reduce -fomit-frame-pointer  -finline-functions -
fno-builtin -I./Include -c -o main.o main.c 
Listing 6: Add a C / H file to the "build.bat" script 

Some of you might recognize gcc as a C compiler. Well, we need it because we are compiling C code 

now. 

The parameters we use are: 

- Wall: 

- -o: “gcc” produces object files which are linked by the linker script “ld” after compiling. 

- fstrength-reduce:  

- fomit-frame-pointer: 

- finline-functions: 

- fno-builtin: 

- I: Tells “gcc” to browse the following directory for header files. We will pass the path to our 

“include” directory. 

If you start the “build.bat” from folder “Step 2” you will see … nothing again :-) Frustrating, isn’t it? 

But after all the compiler tells us (by not complaining) that our code is free of errors and that we are 

going in the right direction! 

3 Writing on screen 

Now it is time to write something that you can show your friends and family! We will finally print 

something on the screen now that we have a basic structure. 

We want to set us two targets for this chapter. On the one hand print colored characters on the 

screen and on the other hand scrolling our text whenever we want to. The VGA video card  your 

computer should own makes it pretty simple. The only thing we have to do is to put the character 

and their color in a special memory area. Then we call a print function and that’s it! The VGA card will 

take care of updating the screen with the given properties. Scrolling is a thing we have to take care of 

on our own. If you want to you might consider calling it creating a driver what we are doing next. 
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The address space I just talked about can be found at 0xB8000 in our physical memory. The buffer 

has the data type short with a size of 16 bits. This 16 bit element can be separated 2 times. The first 8 

bits contain the character that is written on the screen and the last 8 bits contain the foreground and 

the background color. 

Value Color 

0 Black 

1 Blue 

2 Green 

3 Cyan 

4 Red 

5 Magenta 

6 Brown 

7 Light Grey 

8 Dark grey 

9 Light blue 

10 Light green 

11 Light cyan 

12 Light red 

13 Light magenta 

14 Light brown 

15 White 

Table 1: Color values for the VGA video card 

And now we print our line on the screen like: 

Println(„My first text\nis pretty red!“,4,1); 

Unfortunately, we do not. The reason is simple. We are moving on a very low level and have not yet 

defined any functions to easily print out text. We have to see the screen as a matrix (80x25) of 

characters and colors (our 16 bit values) that is provided by the VGA video card. This means we have 

to access a matrix that can hold 25 lines with 80 colored characters which is aligned in a linear buffer. 

Do you know how to break down a two dimensional environment down to a one dimensional (or 

linear)? There exists a simple equation: 

index = (y_value * width_of_screen) + x_value; 



So when we want to write a character to the destination (3,4) (Third character in the fourth line) we 

have to calculate (4*80)+3 which results in 323. 

unsigned  short  *where = (unsigned  short  *)0xB8000  + 323; 
*where = character | (attribute << 8); 

Listing 7: Determining a character on screen and changing it 

With this knowledge we are able to draw colored text on our screen. In the „scrn.c“ I included the 

„system.h“ because we need functions to copy memory, determining the length of strings and 

writing to I/O ports (in this case of the VGA card). 

The scroll function is easy. It copies the line 1 over the line 0, line 2 over line 1, … and clears the last 

line. 

#include <system.h> 
 
// Local variables for text pointer, background and  foreground color 
// and for the cursor coordinates 
unsigned  short  *textmemptr ; 
int  attrib = 0x0F; 
int  csr_x = 0, csr_y = 0; 
 
// Function to scroll the screen for one line if ne eded. 
void  scroll (void ) 
{ 
    unsigned  blank , temp ; 
 
    // We define a blank line. 
    blank = 0x20  | (attrib << 8); 
 
    // If we find ourselves at the last line we need to  scoll. 
    if(csr_y >= 25) 
    { 
        // We move the entire text on the screen up one lin e. 
        temp = csr_y - 25 + 1; 
        memcpy (textmemptr , textmemptr + temp * 80, (25 - temp ) * 80 * 2); 
 
        // We set the last line to our blank line. 
        memsetw (textmemptr + (25 - temp ) * 80, blank , 80); 
        csr_y = 25 - 1; 
    } 
} 
 
// Updates the blinking cursor. This is done by the  VGA adapter 
// as you can see on the functions "outportb" where  we write 
// to an external IO Port. 
void  move_csr (void ) 
{ 
    unsigned  curpos ; 
 
    // Find the position where the cursor has to be pla ced. 
    curpos = csr_y * 80 + csr_x ; 
 
 // Here we write the position to the Control Regist er of 
 // the VGA controller. 
    outportb (0x3D4, 14); 
    outportb (0x3D5, curpos >> 8); 
    outportb (0x3D4, 15); 
    outportb (0x3D5, curpos ); 



} 
 
// Clear the screen 
void  cls () 
{ 
    unsigned  blank ; 
    int  i ; 
 
    // Like the scrolling function we define a blank li ne. 
    blank = 0x20  | (attrib << 8); 
 
    // Now we put this blank line in all 25 lines of ou r screen. 
    for(i = 0; i < 25; i ++) 
        memsetw (textmemptr + i * 80, blank , 80); 
 
    // Set the cursor to 0/0 and set the blinking curso r there. 
    csr_x = 0; 
    csr_y = 0; 
    move_csr (); 
} 
 
// Deletes the last char 
void  delchar () 
{ 
 unsigned  short  *where ; 
 unsigned  att = attrib << 8; 
 char  c = ' ' ; 
  
 csr_x --; 
  
 if(csr_x < 0) 
 { 
  csr_x = 0; 
  csr_y --; 
   
  if(csr_y < 0) 
   csr_y = 0; 
 } 
  
 where = textmemptr + (csr_y * 80 + csr_x ); 
 *where = c | att ; 
 move_csr (); 
} 
 
// Print a char on the screen. 
void  putch (unsigned  char  c ) 
{ 
    unsigned  short  *where ; 
    unsigned  att = attrib << 8; 
 
    // Backspace -> Move the cursor back 
    if(c == 0x08 ) 
    { 
        if(csr_x != 0) csr_x --; 
    } 
 // Moves the cursor foreward to a point that can be  divided by 8 
    else if(c == 0x09 ) 
    { 
        csr_x = (csr_x + 8) & ~(8 - 1); 
    } 
 // Carriage Return -> Brings the cursor back to the  beginning 
 // of the current line 



    else if(c == '\r' ) 
    { 
        csr_x = 0; 
    } 
    // New line -> increments the y value and sets the x value to 0. 
    else if(c == '\n' ) 
    { 
        csr_x = 0; 
        csr_y ++; 
    } 
    // Everything else greater / equal than a space can  be printed out. 
 // Character and color will be printed out. 
    else if(c >= ' ' ) 
    { 
        where = textmemptr + (csr_y * 80 + csr_x ); 
        *where = c | att ; 
        csr_x ++; 
    } 
 
    // If we have printed out more than 79 characters 
 // we add a new line. 
    if(csr_x >= 80) 
    { 
        csr_x = 0; 
        csr_y ++; 
    } 
 
    // Scroll the screen and move the cursor. 
    scroll (); 
    move_csr (); 
} 
 
// Puts out a string which is now easy using putch 
void  puts (unsigned  char  *text ) 
{ 
    int  i ; 
 
    for (i = 0; i < strlen (text ); i ++) 
    { 
        putch (text [i ]); 
    } 
} 
 
// Sets the foreground and background color 
void  settextcolor (unsigned  char  forecolor , unsigned  char  backcolor ) 
{ 
 // First 4 bytes for background, last 4 bytes for f oreground. 
    attrib = (backcolor << 4) | (forecolor & 0x0F); 
} 
 
// Initialize our video driver 
void  init_video (void ) 
{ 
 // @0xB8000 our video memory begins that holds the information 
 // on the content of our screen. 
    textmemptr = (unsigned  short  *)0xB8000 ; 
    cls (); 
} 

Listing 8: Controlling the screen via "scrn.c" 

That is a bunch of code! Let me give you a first insight in what the functions do: 



1) Void scroll(void): Scrolls the screen by one line. 

2) void move_csr(void): Updates the little blinking cursor which is always at the position where 

we are currently typing. 

3) void cls(): Clears the entire screen. 

4) void delchar(): Deletes the last character and resets the cursor. 

5) void putch(unsigned char c): Puts one single character on the screen. 

6) void puts(unsigned char *text): Puts an entire string on the screen. 

7) void settextcolor(unsigned char forecolor, unsigned char backcolor): Sets the foreground 

and background color. 

8) void init_video(void): Initializes our video functions. 

As you might have seen we use functions that we declared in main.c. If you have problems 

understanding the purpose of them you can now figure out what they are used for. 

Hint: If you want to know more about VGA programming have a look at this page: 

http://www.brackeen.com/vga/basics.html  

At last, we have to add the prototypes of these functions to our “system.h” file. Add these lines 

directly before “#endif”. 

/* SCRN.C */  
extern  void  cls (); 
extern  void  putch (unsigned  char  c ); 
extern  void  puts (unsigned  char  *str ); 
extern  void  settextcolor (unsigned  char  forecolor , unsigned  char  
backcolor ); 
extern  void  init_video (); 

Listing 9: Prototypes for the screen functions in "system.h" 

Hint: You will see that I add all function prototypes and structs to “system.h”. This is no good 

programming style. Normally you would create an own header file for each code file. But I personally 

prefer to keep the overview over our written functions and at the end of this tutorial we will have 

more than XX code files so that you will get bored searching for a function prototype in all the header 

files. 

Now, open your „main.c“ and add the following 2 lines at the beginning of the „main“ function. 

init_video (); 
puts ("Hello World!" ); 

Listing 10: Printing on screen 

Now try it. Copy the compiled „kernel.bin“ to the GRUB floppy disk and boot it. This is the first time 

you will see something. This is the most complex Hello World you have ever written am I right? 



4 Let me interrupt you 

After output comes? Right, input! But before we start to ask ourselves how we can use the keyboard 

we have to talk about another topic first: Interrupts. What is an interrupt? An interrupt can be 

compared to a trigger for the processor. Every time, a routine wants the processors attention it 

creates an interrupt, for example when it finishes a command like writing data to a disk, when it has 

data to be read and when an input device has data that wants to be processed. Such as our keyboard 

later on! But an interrupt can also handle exceptions like, for instance, division by zero. 

So we can say interrupts can be used for two purposes: 

- Process hardware messages 

- Process exceptions 

A motherboard contains some chips (The PITS - we will talk about them later) for interrupt handling 

which are programmable so that we can define our own interrupts. These definitions are stored in 

the so called Interrupt Description Table. 

 

5.1 Interrupt Descriptor Table 

The Interrupt Descriptor Table (IDT) is there to tell the CPU what Interrupt Service Routine (ISR) to 

use to handle exceptions or hardware interrupts. 

As the name says the IDT can be imagined as a table with n 64 bits long entries. It has an entry for an 

address where the CPU can find the ISR that is called when the interrupt occurs. Furthermore, it has 

a permission flag which tells which permissions are necessary to call this interrupt. There are 

permission levels from 0 (highest permission) to 3 (lowest). Commonly, the kernel itself has the 

highest permission and applications that are executed on the system have the permission level 3. The 

same permission level technique you will find in the Global Descriptor Table when we talk about 

memory and task management in chapter XX. 

GRAFIK DER 64 bits 

The following source code will explain the IDT a lot better. 

#include <system.h> 
 
// An entry entry in the IDT table 
struct  idt_entry 
{ 
    unsigned  short  base_lo ; 
    unsigned  short  sel ;        // The kernel segment 
    unsigned  char  always0 ;     // This value is always ... 0! 
    unsigned  char  flags ; 
    unsigned  short  base_hi ; 
} __attribute__ ((packed )); // We use the smalest alignment, meaning no 
zeros between 
// our variables. 
 
struct  idt_ptr 
{ 
    unsigned  short  limit ; 



    unsigned  int  base ; 
} __attribute__ ((packed )); 
 
// The IDT with 256 entries. We will only use 32 en tries. If any other 
// IDT entry is called it will cause an "Unhandled Interrupt" exception. 
struct  idt_entry idt [256]; 
struct  idt_ptr idtp ; 
 
// This extern function is defined in start.asm. It  initializes a new 
// IDT (idtp). This can once again only be done in assembler. 
extern  void  idt_load (); 
 
// Set an entry in the IDT. 
void  idt_set_gate (unsigned  char  num, unsigned  long  base , unsigned  short  
sel , unsigned  char  flags ) 
{ 
    // IR's base address 
    idt [num].base_lo = (base & 0xFFFF); 
    idt [num].base_hi = (base >> 16) & 0xFFFF; 
 
 // Other properties are set here 
    idt [num].sel = sel ; 
    idt [num].always0 = 0; 
    idt [num].flags = flags ; 
} 
 
// Initialize the IDT 
void  idt_install () 
{ 
    // Sets the max address of the IDT 
    idtp .limit = (sizeof (struct  idt_entry ) * 256) - 1; 
 // Sets the start address of the IDT 
    idtp .base = &idt ; 
 
    // Set the entire IDT to zero 
    memset (&idt , 0, sizeof(struct  idt_entry ) * 256); 
 
 // Here you can add new ISRs to the IDT via idt_set _gate 
 
    // Tells the Processor where the new IDT can be fou nd 
    idt_load (); 
} 

Listing 11: The Interrupt Descriptor Table 

So what do we do here? We create 2 structs, idt_entry and idt_ptr. The first holds an entry in the IDT 

to define an ISR with its start and end point in memory so that it can be called. The idt_ptr struct 

holds the information on the start and end in memory of the new IDT. Using the function idt_install 

we can now set the IDT memory to the place where an array of 256 idt_entries can be found. 

Hint:  The packed directive tells the compiler to avoid zeros between the fields of the struct 

“idt_entry”. This can be useful if to save memory and to keep a certain structure in your code so that 

an instance of the struct can be read by other procedures which expect exactly this structure. This is 

what our CPU does.  It expects the “idt_entry” to have an exact structure (short, short, char, char, 

short) so that it can be processes by the CPUs routines. 

We initialize this memory with zero and tell via an external function (idt_load) in our start.asm where 

the processor can find our new IDT which is our idt struct. Add the following code after the line “; 

Place holder for interrupt code.”. 



; Loads the IDT from idt.c as new IDT  
global  _idt_load 
extern  _idtp 
_idt_load : 
    lidt [_idtp ] 
    ret 

Listing 12: Loading the new IDT in start.asm 

Using the remaining function idt_set_gate we can define new ISRs. Be aware that we have no 

checking for valid values here! Let’s expect our OS to work properly :-) 

Last but not least add these three lines to system.h. 

/* IDT.C */  
extern  void  idt_set_gate (unsigned  char  num, unsigned  long  base , unsigned  
short  sel , unsigned  char  flags ); 
extern  void  idt_install (); 

Listing 13: Making our IDT functions public in system.h 

 

4.2 Interrupts to handle exceptions 

Can you remember that interrupts handle exceptions as well? As next step we will define the most 

important exceptions for our OS. An exception could be “Division by 0” or “Debug exception” and is 

defined as case that is encountered when the processor cannot continue the normal code execution.  

We will add 32 exceptions to our IDT: 

Exception number Description Error Code? 

0 Division By Zero Exception No 

1 Debug Exception No 

2 Non Maskable Interrupt 

Exception 

No 

3 Breakpoint Exception No 

4 Into Detected Overflow 

Exception 

No 

5 Out Of Bounds Exception No 

6 Invalid Opcode Exception No 

7 No Coprocessor Exception No 

8 Double Fault Expcetion Yes 

9 Coprocessor Segment Overrun Yes 



Exception 

10 Bad TSS Exception Yes 

11 Segment Not Present Exception Yes 

12 Stack Fault Exception Yes 

13 General Protection Fault 

Exception 

Yes 

14 Page Fault Exception Yes 

15 Unknown Interrupt Exception No 

16 Coprocessor Fault Exception No 

17 Alignment Check Exception 

(486+) 

No 

18 Machine Check Exception (586+ 

/ Pentium) 

No 

19 – 31 Reserved Exceptions No 

Table 2: Exceptions in the IDT 

Some exceptions give back an error code, meaning an error code is pushed on the stack. In our later 

code we will make it easier by pushing the error code 0 on the stack for all exceptions which do not 

give back an error code. To know which ISR has been called we will push the ID of the exception on 

the stack as well. If we are in an IRS we first deactivate interrupts using the assembler code “cli”. This 

avoids two interrupt routines to be called at the same time. In the following code we will define our 

interrupt routines which consist of quite a lot of code. Since we are working a lot with the stack and 

registers we will use assembler code again. 

; The interrupt service routines definitions  
global  _isr0 
global  _isr1 
global  _isr2 
global  _isr3 
global  _isr4 
global  _isr5 
global  _isr6 
global  _isr7 
global  _isr8 
global  _isr9 
global  _isr10 
global  _isr11 
global  _isr12 
global  _isr13 
global  _isr14 
global  _isr15 
global  _isr16 
global  _isr17 
global  _isr18 
global  _isr19 



global  _isr20 
global  _isr21 
global  _isr22 
global  _isr23 
global  _isr24 
global  _isr25 
global  _isr26 
global  _isr27 
global  _isr28 
global  _isr29 
global  _isr30 
global  _isr31 
 
;  0: Divide By Zero Exception  
_isr0 : 
    cli 
    push byte 0 
    push byte 0 
    jmp isr_common_stub 
 
;  1: Debug Exception  
_isr1 : 
    cli 
    push byte 0 
    push byte 1 
    jmp isr_common_stub 
 
;  2: Non Maskable Interrupt Exception  
_isr2 : 
    cli 
    push byte 0 
    push byte 2 
    jmp isr_common_stub 
 
;  3: Int 3 Exception  
_isr3 : 
    cli 
    push byte 0 
    push byte 3 
    jmp isr_common_stub 
 
;  4: INTO Exception  
_isr4 : 
    cli 
    push byte 0 
    push byte 4 
    jmp isr_common_stub 
 
;  5: Out of Bounds Exception  
_isr5 : 
    cli 
    push byte 0 
    push byte 5 
    jmp isr_common_stub 
 
;  6: Invalid Opcode Exception  
_isr6 : 
    cli 
    push byte 0 
    push byte 6 
    jmp isr_common_stub 
 



;  7: Coprocessor Not Available Exception  
_isr7 : 
    cli 
    push byte 0 
    push byte 7 
    jmp isr_common_stub 
 
;  8: Double Fault Exception (With Error Code!)  
_isr8 : 
    cli 
    push byte 8 
    jmp isr_common_stub 
 
;  9: Coprocessor Segment Overrun Exception  
_isr9 : 
    cli 
    push byte 0 
    push byte 9 
    jmp isr_common_stub 
 
; 10: Bad TSS Exception (With Error Code!)  
_isr10 : 
    cli 
    push byte 10 
    jmp isr_common_stub 
 
; 11: Segment Not Present Exception (With Error Cod e!)  
_isr11 : 
    cli 
    push byte 11 
    jmp isr_common_stub 
 
; 12: Stack Fault Exception (With Error Code!)  
_isr12 : 
    cli 
    push byte 12 
    jmp isr_common_stub 
 
; 13: General Protection Fault Exception (With Erro r Code!)  
_isr13 : 
    cli 
    push byte 13 
    jmp isr_common_stub 
 
; 14: Page Fault Exception (With Error Code!)  
_isr14 : 
    cli 
    push byte 14 
    jmp isr_common_stub 
 
; 15: Reserved Exception  
_isr15 : 
    cli 
    push byte 0 
    push byte 15 
    jmp isr_common_stub 
 
; 16: Floating Point Exception  
_isr16 : 
    cli 
    push byte 0 
    push byte 16 



    jmp isr_common_stub 
 
; 17: Alignment Check Exception  
_isr17 : 
    cli 
    push byte 0 
    push byte 17 
    jmp isr_common_stub 
 
; 18: Machine Check Exception  
_isr18 : 
    cli 
    push byte 0 
    push byte 18 
    jmp isr_common_stub 
 
; 19: Reserved  
_isr19 : 
    cli 
    push byte 0 
    push byte 19 
    jmp isr_common_stub 
 
; 20: Reserved  
_isr20 : 
    cli 
    push byte 0 
    push byte 20 
    jmp isr_common_stub 
 
; 21: Reserved  
_isr21 : 
    cli 
    push byte 0 
    push byte 21 
    jmp isr_common_stub 
 
; 22: Reserved  
_isr22 : 
    cli 
    push byte 0 
    push byte 22 
    jmp isr_common_stub 
 
; 23: Reserved  
_isr23 : 
    cli 
    push byte 0 
    push byte 23 
    jmp isr_common_stub 
 
; 24: Reserved  
_isr24 : 
    cli 
    push byte 0 
    push byte 24 
    jmp isr_common_stub 
 
; 25: Reserved  
_isr25 : 
    cli 
    push byte 0 



    push byte 25 
    jmp isr_common_stub 
 
; 26: Reserved  
_isr26 : 
    cli 
    push byte 0 
    push byte 26 
    jmp isr_common_stub 
 
; 27: Reserved  
_isr27 : 
    cli 
    push byte 0 
    push byte 27 
    jmp isr_common_stub 
 
; 28: Reserved  
_isr28 : 
    cli 
    push byte 0 
    push byte 28 
    jmp isr_common_stub 
 
; 29: Reserved  
_isr29 : 
    cli 
    push byte 0 
    push byte 29 
    jmp isr_common_stub 
 
; 30: Reserved  
_isr30 : 
    cli 
    push byte 0 
    push byte 30 
    jmp isr_common_stub 
 
; 31: Reserved  
_isr31 : 
    cli 
    push byte 0 
    push byte 31 
    jmp isr_common_stub 
 
 
; In isr_common_stub we will use a C function calle d "fault_handler"  
extern  _fault_handler 
 
; Here we save the processor state, calls the C fau lt handler  
; and restores the stack frame in the end.  
isr_common_stub : 
    pusha 
    push ds 
    push es 
    push fs 
    push gs 
    mov ax, 0x10  
    mov ds, ax 
    mov es, ax 
    mov fs, ax 
    mov gs, ax 



    mov eax, esp 
    push eax 
    mov eax, _fault_handler 
    call eax 
    pop eax 
    pop gs 
    pop fs 
    pop es 
    pop ds 
    popa 
    add esp, 8 
    iret 

Listing 14: Add these lines below the "_idt_load" part in start.asm 

The comments in the code are self explanatory for the functionality. We basically offer interrupt 

routines to be called. If they are called we push the error code on the stack, save the processor state, 

handle the fault and restore the state on the stack. 

Hint: When you ever plan to write a boot loader for your OS do not forget to turn off your interrupts 

when it comes to creating a stack. You can use the assembler function “cli” to disable interrupts. “sti” 

enables them again. 

Now we have to register our ISRs to the IDT and print out an exception when the fault handler is 

called. By changing the text color to red we let the thing look a little bit fancier. Therefore, we create 

a new file called “isrs.c”. 

#include <system.h> 
 
// The exception handlers in start.asm 
extern  void  isr0 (); 
extern  void  isr1 (); 
extern  void  isr2 (); 
extern  void  isr3 (); 
extern  void  isr4 (); 
extern  void  isr5 (); 
extern  void  isr6 (); 
extern  void  isr7 (); 
extern  void  isr8 (); 
extern  void  isr9 (); 
extern  void  isr10 (); 
extern  void  isr11 (); 
extern  void  isr12 (); 
extern  void  isr13 (); 
extern  void  isr14 (); 
extern  void  isr15 (); 
extern  void  isr16 (); 
extern  void  isr17 (); 
extern  void  isr18 (); 
extern  void  isr19 (); 
extern  void  isr20 (); 
extern  void  isr21 (); 
extern  void  isr22 (); 
extern  void  isr23 (); 
extern  void  isr24 (); 
extern  void  isr25 (); 
extern  void  isr26 (); 
extern  void  isr27 (); 
extern  void  isr28 (); 



extern  void  isr29 (); 
extern  void  isr30 (); 
extern  void  isr31 (); 
 
// Here we register the first 32 ISRs in our IDT. T he access flag is 
// set to 0x8E which means the entry is present and  running in ring 0 
(kernel mode) 
// and has the lower bytes set to the required '14' . 
void  isrs_install () 
{ 
    idt_set_gate (0, (unsigned )isr0 , 0x08 , 0x8E); 
    idt_set_gate (1, (unsigned )isr1 , 0x08 , 0x8E); 
    idt_set_gate (2, (unsigned )isr2 , 0x08 , 0x8E); 
    idt_set_gate (3, (unsigned )isr3 , 0x08 , 0x8E); 
    idt_set_gate (4, (unsigned )isr4 , 0x08 , 0x8E); 
    idt_set_gate (5, (unsigned )isr5 , 0x08 , 0x8E); 
    idt_set_gate (6, (unsigned )isr6 , 0x08 , 0x8E); 
    idt_set_gate (7, (unsigned )isr7 , 0x08 , 0x8E); 
 
    idt_set_gate (8, (unsigned )isr8 , 0x08 , 0x8E); 
    idt_set_gate (9, (unsigned )isr9 , 0x08 , 0x8E); 
    idt_set_gate (10, (unsigned )isr10 , 0x08 , 0x8E); 
    idt_set_gate (11, (unsigned )isr11 , 0x08 , 0x8E); 
    idt_set_gate (12, (unsigned )isr12 , 0x08 , 0x8E); 
    idt_set_gate (13, (unsigned )isr13 , 0x08 , 0x8E); 
    idt_set_gate (14, (unsigned )isr14 , 0x08 , 0x8E); 
    idt_set_gate (15, (unsigned )isr15 , 0x08 , 0x8E); 
 
    idt_set_gate (16, (unsigned )isr16 , 0x08 , 0x8E); 
    idt_set_gate (17, (unsigned )isr17 , 0x08 , 0x8E); 
    idt_set_gate (18, (unsigned )isr18 , 0x08 , 0x8E); 
    idt_set_gate (19, (unsigned )isr19 , 0x08 , 0x8E); 
    idt_set_gate (20, (unsigned )isr20 , 0x08 , 0x8E); 
    idt_set_gate (21, (unsigned )isr21 , 0x08 , 0x8E); 
    idt_set_gate (22, (unsigned )isr22 , 0x08 , 0x8E); 
    idt_set_gate (23, (unsigned )isr23 , 0x08 , 0x8E); 
 
    idt_set_gate (24, (unsigned )isr24 , 0x08 , 0x8E); 
    idt_set_gate (25, (unsigned )isr25 , 0x08 , 0x8E); 
    idt_set_gate (26, (unsigned )isr26 , 0x08 , 0x8E); 
    idt_set_gate (27, (unsigned )isr27 , 0x08 , 0x8E); 
    idt_set_gate (28, (unsigned )isr28 , 0x08 , 0x8E); 
    idt_set_gate (29, (unsigned )isr29 , 0x08 , 0x8E); 
    idt_set_gate (30, (unsigned )isr30 , 0x08 , 0x8E); 
    idt_set_gate (31, (unsigned )isr31 , 0x08 , 0x8E); 
} 
 
// This string array contains the message correspon ding 
// to the exceptions. 
unsigned  char  *exception_messages [] = 
{ 
    "Division By Zero" , 
    "Debug" , 
    "Non Maskable Interrupt" , 
    "Breakpoint" , 
    "Into Detected Overflow" , 
    "Out of Bounds" , 
    "Invalid Opcode" , 
    "No Coprocessor" , 
 
    "Double Fault" , 
    "Coprocessor Segment Overrun" , 



    "Bad TSS" , 
    "Segment Not Present" , 
    "Stack Fault" , 
    "General Protection Fault" , 
    "Page Fault" , 
    "Unknown Interrupt" , 
 
    "Coprocessor Fault" , 
    "Alignment Check" , 
    "Machine Check" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved" , 
    "Reserved"  
}; 
 
// This fault handler is used in every ISR. The par ameter tells which 
exception 
// happened. If the interrupt is valid (id < 32) we  print the exception 
message 
// and halt the system by an endless loop. 
void  fault_handler (struct  regs *r ) 
{ 
    if (r ->int_no < 32) 
    { 
   settextcolor (4,0); 
        puts (exception_messages [r ->int_no ]); 
        puts (" Exception. System Halted!\n" ); 
        for (;;); 
   settextcolor (15,0); 
    } 
} 

Listing 15: Create "isrs.c" to register the ISRs and to put out fault messages 

In the “fault_handler” procedure we use a struct “regs” which represents a stack frame and lets us 

take a snapshot to handle multiple interrupts. Add this struct to “system.h”. Furthermore, add the 

prototype of “isrs_install”. 

// Here we can save our stack 
struct  regs 
{ 
    unsigned  int  gs , fs , es , ds ; 
    unsigned  int  edi , esi , ebp , esp , ebx , edx , ecx , eax ; 
    unsigned  int  int_no , err_code ; 
    unsigned  int  eip , cs , eflags , useresp , ss ;     
}; 

/* ISRS.C */  
extern  void  isrs_install (); 



Listing 16: The regs struct to take a stack snapshot and the ISR prototype 

Now we can call “idt_install();” and “isrs_install();” in our main.c. And here it gets interesting! Add 

the line “putch(10 / 0);” before the endless loop in the main routine. If you did everything right you 

will see a red line with the error code we defined for the exception “Division by zero”. 

4.3 Interrupt Requests to handle hardware messages 

Interrupt Requests are interrupts that are issued by hardware. Whenever a CPU receives an interrupt 

request (IRQ) it pauses whatever it is doing and executes the necessary action like reading from the 

keyboard. Afterwards it writes the hex value 0x20 to a command register of the Programmable 

Interrupt Controller (PIC) to tell that he has finished its action. So what is a PIC? A PIC is a chip on the 

motherboard to manage IRQs. Each motherboard has two of them and each PIC can handle 8 IRQs. 

The second PIC can also be told that the CPU finished a command by writing the value 0xA0 to the 

command register.  

So what is the advantage of a Programmable Interrupt Controller? Easy! Normally, IRQ0 – IRQ7 are 

mapped to the IDT entry 8 to 15 and IRQ8 – IRQ15 are mapped to IDT entry 112 – 120. As you can 

remember we reserved IDT entry 0-31 for exceptions! So we will remap IRQ0-IRQ15 to the IDT 

entries 32 – 47. Again, we will extend our start.asm. Add the following lines after the block 

“isr_common_stub” (after the line “iret”). 

; Handling Hardware Interrupt Requests  
global  _irq0 
global  _irq1 
global  _irq2 
global  _irq3 
global  _irq4 
global  _irq5 
global  _irq6 
global  _irq7 
global  _irq8 
global  _irq9 
global  _irq10 
global  _irq11 
global  _irq12 
global  _irq13 
global  _irq14 
global  _irq15 
 
; 32: IRQ0  
_irq0 : 
    cli 
    push byte 0 
    push byte 32 
    jmp irq_common_stub 
 
; 33: IRQ1  
_irq1 : 
    cli 
    push byte 0 
    push byte 33 
    jmp irq_common_stub 
 
; 34: IRQ2  
_irq2 : 
    cli 



    push byte 0 
    push byte 34 
    jmp irq_common_stub 
 
; 35: IRQ3  
_irq3 : 
    cli 
    push byte 0 
    push byte 35 
    jmp irq_common_stub 
 
; 36: IRQ4  
_irq4 : 
    cli 
    push byte 0 
    push byte 36 
    jmp irq_common_stub 
 
; 37: IRQ5  
_irq5 : 
    cli 
    push byte 0 
    push byte 37 
    jmp irq_common_stub 
 
; 38: IRQ6  
_irq6 : 
    cli 
    push byte 0 
    push byte 38 
    jmp irq_common_stub 
 
; 39: IRQ7  
_irq7 : 
    cli 
    push byte 0 
    push byte 39 
    jmp irq_common_stub 
 
; 40: IRQ8  
_irq8 : 
    cli 
    push byte 0 
    push byte 40 
    jmp irq_common_stub 
 
; 41: IRQ9  
_irq9 : 
    cli 
    push byte 0 
    push byte 41 
    jmp irq_common_stub 
 
; 42: IRQ10  
_irq10 : 
    cli 
    push byte 0 
    push byte 42 
    jmp irq_common_stub 
 
; 43: IRQ11  
_irq11 : 



    cli 
    push byte 0 
    push byte 43 
    jmp irq_common_stub 
 
; 44: IRQ12  
_irq12 : 
    cli 
    push byte 0 
    push byte 44 
    jmp irq_common_stub 
 
; 45: IRQ13  
_irq13 : 
    cli 
    push byte 0 
    push byte 45 
    jmp irq_common_stub 
 
; 46: IRQ14  
_irq14 : 
    cli 
    push byte 0 
    push byte 46 
    jmp irq_common_stub 
 
; 47: IRQ15  
_irq15 : 
    cli 
    push byte 0 
    push byte 47 
    jmp irq_common_stub 
 
extern  _irq_handler 
 
irq_common_stub : 
    pusha 
    push ds 
    push es 
    push fs 
    push gs 
 
    mov ax, 0x10  
    mov ds, ax 
    mov es, ax 
    mov fs, ax 
    mov gs, ax 
    mov eax, esp 
 
    push eax 
    mov eax, _irq_handler 
    call eax 
    pop eax 
 
    pop gs 
    pop fs 
    pop es 
    pop ds 
    popa 
    add esp, 8 
    iret 



Listing 17: Remapping the Interrupt Service Requests 

 Once again, we react on interrupts. When, for example, the Interrupt Request 15 occurs interrupts 

will be forbidden, we push a dummy error code 0 on the stack followed by the index of the interrupt 

to match it to the entry in the Interrupt Descriptor Table afterwards.  Then we save our registers to 

the stack, handle the Interrupt Request and restore our registers from the stack again. 

As you might guess the C part follows now. Create a new file and call it “irq.c”. 

#include <system.h> 
 
// We define these Interrupt Service Requests on ou r own 
// to point to a special IRQ handler instead of the  regular 
// fault_handler. 
extern  void  irq0 (); 
extern  void  irq1 (); 
extern  void  irq2 (); 
extern  void  irq3 (); 
extern  void  irq4 (); 
extern  void  irq5 (); 
extern  void  irq6 (); 
extern  void  irq7 (); 
extern  void  irq8 (); 
extern  void  irq9 (); 
extern  void  irq10 (); 
extern  void  irq11 (); 
extern  void  irq12 (); 
extern  void  irq13 (); 
extern  void  irq14 (); 
extern  void  irq15 (); 
 
// Pointer array to handle custom ORQ handlers of a  special IRQ 
void  *irq_routines [16] = 
{ 
    0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0 
}; 
 
// With this function we can define a custom IRQ ha ndler 
// for an IRQ. So we manage the target functions th at are called 
// when an interrupt occurs on our own. 
void  irq_install_handler (int  irq , void  (*handler )(struct  regs *r )) 
{ 
    irq_routines [irq ] = handler ; 
} 
 
// By setting the pointer of an interrupt routine t o 0 
// we will unload the handler. 
void  irq_uninstall_handler (int  irq ) 
{ 
    irq_routines [irq ] = 0; 
} 
 
// Here we remap our IRQs (0-15 to 32-47) as explai ned in the 
// tutorial. 
void  irq_remap (void ) 
{ 
    outportb (0x20 , 0x11 ); 
    outportb (0xA0, 0x11 ); 
    outportb (0x21 , 0x20 ); 
    outportb (0xA1, 0x28 ); 



    outportb (0x21 , 0x04 ); 
    outportb (0xA1, 0x02 ); 
    outportb (0x21 , 0x01 ); 
    outportb (0xA1, 0x01 ); 
    outportb (0x21 , 0x0 ); 
    outportb (0xA1, 0x0 ); 
} 
 
// Identical to defining the exception handlers we will 
// install the appropriate Interrupt Service Routin es to the 
// corresponding entries in the IDT. 
void  irq_install () 
{ 
    irq_remap (); 
 
    idt_set_gate (32, (unsigned )irq0 , 0x08 , 0x8E); 
    idt_set_gate (33, (unsigned )irq1 , 0x08 , 0x8E); 
    idt_set_gate (34, (unsigned )irq2 , 0x08 , 0x8E); 
    idt_set_gate (35, (unsigned )irq3 , 0x08 , 0x8E); 
    idt_set_gate (36, (unsigned )irq4 , 0x08 , 0x8E); 
    idt_set_gate (37, (unsigned )irq5 , 0x08 , 0x8E); 
    idt_set_gate (38, (unsigned )irq6 , 0x08 , 0x8E); 
    idt_set_gate (39, (unsigned )irq7 , 0x08 , 0x8E); 
 
    idt_set_gate (40, (unsigned )irq8 , 0x08 , 0x8E); 
    idt_set_gate (41, (unsigned )irq9 , 0x08 , 0x8E); 
    idt_set_gate (42, (unsigned )irq10 , 0x08 , 0x8E); 
    idt_set_gate (43, (unsigned )irq11 , 0x08 , 0x8E); 
    idt_set_gate (44, (unsigned )irq12 , 0x08 , 0x8E); 
    idt_set_gate (45, (unsigned )irq13 , 0x08 , 0x8E); 
    idt_set_gate (46, (unsigned )irq14 , 0x08 , 0x8E); 
    idt_set_gate (47, (unsigned )irq15 , 0x08 , 0x8E); 
} 
 
// Each service routine of an Interrupt Request poi nts to this 
// function. After handling the ISR we need to tell  the interrupt 
// controllers that we are done handling the interr upt. As said 
// in the tutorial this happens by putting the hex value 0x20 to 
// the adress 0x20 for the first controller and for  the second 
// controller we write 0x20 to 0xA0. 
// If the second controller (IRQ from 8 to 15) rece ives and interrupt 
// we need to tell the first controller, too, that we have finished 
// the interrupt routine. 
void  irq_handler (struct  regs *r ) 
{ 
 // Blank function pointer 
    void  (*handler )(struct  regs *r ); 
 
    // If we have a routine defined for this interrupt call it! 
    handler = irq_routines [r ->int_no - 32]; 
    if (handler ) 
    { 
        handler (r ); 
    } 
 
 // Here we are already done with the handling of ou r interrupt! 
  
 // If the entry in the IDT that we called had an in dex >= 40 
 // we will have to send an "End of Interrupt" (0x20 ) to the 
 // second controller. 
    if (r ->int_no >= 40) 
    { 



        outportb (0xA0, 0x20 ); 
    } 
 
 // In both cases we need to tell the first controll er that 
 // we are done handling our Interrupt Routine. 
    outportb (0x20 , 0x20 ); 
} 

Listing 18: "irq.c" to handle our (non exception) hardware interrupts 

The source code is easy to understand and very similar to listing XX so I will not comment on it. Now 

we are almost done! The next step will be to add the function prototypes to “system.h”. 

/* IRQ.C */  
extern  void  irq_install_handler (int  irq , void  (*handler )(struct  regs *r )); 
extern  void  irq_uninstall_handler (int  irq ); 
extern  void  irq_install (); 

Listing 19: Function prototypes for the Interrupt Requests 

So, it is time to use the code we have written in the last hour. Let us add the necessary initialization 

to our “main.c”. Add these two lines right before “for(;;);”. The first function initializes our Interrupt 

Requests and the last line is an assembler call to allow interrupts from now on! 

    irq_install (); 
    __asm__ __volatile__ ("sti" ); 

Listing 20: Initialize Interrupt Requests and allow interrupts from now on 

Wow, this was a bunch of difficult code! What we finally did is we wrote procedures to let our kernel 

handle exceptions that occur and furthermore we are now able to react on hardware inputs! Well, 

not yet because we have to install our handler for the keyboard. So let us do this now! 

5 Our first input device – the keyboard 

Motivational Speech: We will slow down a little bit from now on. The last chapters were really 

difficult and now that you managed you get here proves 3 things. You are smart. You have what is 

called in today’s business environment “drive to achieve”. And you have passed a line that most 

hobby OS developers did not pass this is why you can call yourself an advanced beginner from now 

on :-) 

Do you remember that we wrote a simple driver for the VGA controller? We will now do the same for 

the keyboard which is mostly converting scan codes to ASCII (Abkürzung) characters that we can 

understand. 

Hint: Why use scan codes? As you know English keyboards look different to German ones. So when 

we press the “z” key on an English keyboard it will write a “y” in an OS that is set to German 

language. When we set the OS to English language it will print the character “z”. Even if we use the 

same key! This is possible because the OS maps the scan code of every key (which is an integer) to a 

character. 

We will use a lookup table to map the scan codes to ASCII which is a simple array. Before we define 

this array we will have to learn about a special case. If the top bit of the byte we will receive from the 



keyboard via our interrupt is set this means that the key has been released. You can check this easily 

with “scancode & 0x80”. 

Create a “kb.c” and add the following code: 

#include <system.h> 
 
// KBDUS stands for US keyboard layout.  
// Create a layout in a different language if you w ant 
// or confuse your friends with a weired mapping :- ) 
unsigned  char  kbdus [128] = 
{ 
    0,  27, '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , /* 9 */  
  '9' , '0' , '-' , '=' , '\b' , /* Backspace */  
  '\t' ,   /* Tab */  
  'q' , 'w' , 'e' , 'r' , /* 19 */  
  't' , 'y' , 'u' , 'i' , 'o' , 'p' , '[' , ']' , '\n' ,  /* Enter key */  
    0,   /* 29   - Control */  
  'a' , 's' , 'd' , 'f' , 'g' , 'h' , 'j' , 'k' , 'l' , ';' , /* 39 */  
 '\'' , '`' ,   0,  /* Left shift */  
 '\\' , 'z' , 'x' , 'c' , 'v' , 'b' , 'n' ,   /* 49 */  
  'm' , ',' , '.' , '/' ,   0,     /* Right shift */  
  '*' , 
    0, /* Alt */  
  ' ' , /* Space bar */  
    0, /* Caps lock */  
    0, /* 59 - F1 key ... > */  
    0,   0,   0,   0,   0,   0,   0,   0, 
    0, /* < ... F10 */  
    0, /* 69 - Num lock*/  
    0, /* Scroll Lock */  
    0, /* Home key */  
    0, /* Up Arrow */  
    0, /* Page Up */  
  '-' , 
    0, /* Left Arrow */  
    0, 
    0, /* Right Arrow */  
  '+' , 
    0, /* 79 - End key*/  
    0, /* Down Arrow */  
    0, /* Page Down */  
    0, /* Insert Key */  
    0, /* Delete Key */  
    0,   0,   0, 
    0, /* F11 Key */  
    0, /* F12 Key */  
    0, /* All other keys are undefined */  
}; 
 
// Handler for keyboard interrupts 
// We can register this one with "irq_install_handl er". 
void  keyboard_handler (struct  regs *r ) 
{ 
    unsigned  char  scancode ; 
 
    // Read from the keyboards data buffer 
    scancode = inportb (0x60 ); 
 
    // Check if the key has been released 
    if (scancode & 0x80 ) 
    { 



  // Use this branch to check if shift, alt, control,  ... has 
been released 
    } 
    else 
    { 
  // Here a key is pressed. When you keep holding the  key 
  // down you will receive interrupts repeatedly. 
 
  // Here we will output each char that we receive. 
        putch (kbdus [scancode ]); 
    } 
} 
 
// Install the keyboard interrupt request handler 
void  keyboard_install () 
{ 
    irq_install_handler (1, keyboard_handler ); 
} 

Listing 21: IRQ to handle keyboard input 

The motherboard has an own microcontroller for the keyboard. This controller has two channels, one 

for the mouse and one for the keyboard. Additionally, it has two registers: A data register (0x60) and 

a control register (0x64). Anything the keyboard sends to the computer is stored in the data register. 

You might recognize that some values in the layout map are left at 0. We will make up our own 

values for these keys. Furthermore, it will be necessary to add a routine to save the state of some 

keys like capslock, numlock, scrolllock, alt, control, … to allow uppercase letters! 

EXTEND KB.C 

Add the function prototype for the keyboard_installation to the “system.h”. 

/* KEYBOARD.C */  
extern  void  keyboard_install (); 

 

And call this function in the “main.c” right before the line “__asm__ __volatile__ ("sti");”.  Compile 

your code and see that you can write on the screen. Check the automatic scrolling that we 

implemented in the output part! 

6 The Programmable Interval Timer 

You might have heard of it as system clock. It provides three different channels. Channel 0 is bound 

to IRQ0, channel 1 is for system use and should never been accessed, channel 2 is for the system 

speaker.  

We will use channel 0 to schedule the CPU times to new processes later on as well as to make the 

current process sleep for a certain time. By default the tick rate is set to generate 18222 interrupts 

per second. The reason for this is that if a tick occurs all 0.055 seconds and if we use a 16 bit timer 

tick counter the counter will overflow after exactly one hour and will automatically set back to 0. 

Once again we use the outportb function to set the timer interval for firing IRQ0. Each of the three 

channels I mentioned has 3 data registers 0x40, 0x41 and 0x42 as well as a command register on 



0x43. The timer of the PIT is able to change the frequency it is firing and it gets even better, we can 

set a timer for each of our three channels. But why do we only have one command register? The 

answer is we use a divisor register. In such a register the command we enter is split up in binary code 

and can be separated in several properties.  

 

- CNTR – Counter of the channel (0-2) 

- RW – Read Write Mode (1 = Least Significant Byte, 2 = Most Significant Byte, 3 = LSB then 

MSB) 

- Mode – 0 = Interrupt on terminal count, 1 = Hardware retriggerable one shot, 2 = Rate 

generator, 3 = Square Wave Mode, 4 = Software strobe, 5 = Hardware strobe 

- Binary Coded Decimal (BCD) – 0 = 16 bit counter, 1 = 4x BCD decade counter 

So what does this all mean? We write a 16 bit value into the command register which is separated 

into CNTR, RW, Mode and BCD. The CNTR value should be clear; it defines the channel we want to 

change (Interrupt Timer for IRQ0, System and Speaker).  The RW property tells if we want to write 

the first 8 bit of the 16 bits, the last 8 bits or both. Since we write the entire 16 bits of the data we 

want to write to the data register we pick both (our frequency will be an integer). I do not want to 

talk about each mode in detail because this will take some time. You can read about them here
8
. 

Basically they are all modes of running the counter. They define only different ways to start the 

counting or the way of counting. 

Anyway, we will use mode 3, the square wave generator. Last but not least we have to define if we 

want to use a binary coded decimal. As you can guess we will not! We will transfer our 16 bit 

counter. 

Now we have to write a hex value to the command register 0x43. How do we build this command 

up? Easy, we pick the counter (0), the RW mode (3), the mode (3) and the BCD (0) and form this to a 

binary value which is: 00 11 011 0. Now use a calculator to transform this binary value to a 

hexadecimal value and we will receive: 36. 

The timer will divide it’s input clock of 1193180Hz by the number of we put into the data register to 

figure out many times per second it should fire the signal for the channel. 

So we are ready to write some code again! Create a new file “timer.c” and add the following lines. 

#include <system.h> 
 
// For how many ticks has our system been running? 
int  timer_ticks = 0; 
 
// Set the timer frequency 
void  timer_phase (int  hz ) 
{ 
    int  divisor = 1193180  / hz ; 
    outportb (0x43 , 0x36 ); // Write the command we assembled 
        // in the tutorial to the command 
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register 
    outportb (0x40 , divisor & 0xFF); // Set the high byte of the frequency 
    outportb (0x40 , divisor >> 8); // Set the low byte of the frequency 
} 
 
// This one handles the interrupt for the timer. We  increment 
// the timer_ticks everytime the interrupt is fired . By 
// default the timer ticks 18222 times per second. 
void  timer_handler (struct  regs *r ) 
{ 
    timer_ticks ++; 
 
 // Every 18 ticks (~1 second) we can execute an act ion here. 
    if (timer_ticks % 18 == 0) 
    { 
        puts ("One second has passed\n" ); 
    } 
} 
 
int  nDummy = 0; 
void  dummy() { 
 nDummy = nDummy + 1; 
} 
 
// This is a wait function which loops until a spec ial 
// time was waited for. 
void  timer_wait (int  ticks ) 
{ 
    unsigned  long  eticks ; 
 
    eticks = timer_ticks + ticks ; 
    while(timer_ticks < eticks ) 
 { 
  dummy (); 
 } 
} 
 
// We set up the system clock for IRQ0 to register to our 
// timer. 
void  timer_install () 
{ 
    irq_install_handler (0, timer_handler ); 
} 

Listing 22: "Timer.c" to enable our system clock 

You will wonder aobut the function “dummy”. This is a tricky problem I was not able to solve yet. 

Generally, it should be sufficient to use the line “while(timer_ticks < eticks);” in our “timer_wait” 

function but it seems that this loop only ends when there is a command between the brackets that 

actually does something. An empty dummy function is no solution. Of course, this is not very pretty 

but it works. 

Add the following lines to the “system.h”. 

/* TIMER.C */  
extern  void  timer_wait (int  ticks ); 
extern  void  timer_install (); 

 

Finally, add “timer_install();” to your main method in “main.c” and see what happens! 



7 Sounds 

Now that you read the chapter on the PIT, you will know why I talk about sounds now. You will 

remember that its channel 2 is designed to control the speaker. And now that we know about the 

command register of the PIT it is pretty simple to implement some easy functions to control the 

speaker. 

Hint: Why do we still need the speaker? We can use the audio signals to tell the user of our OS about 

the current state of his machine. An example would be an exception that is fired through an 

interrupt. On the one hand we use red letters but on the other hand we can strengthen this warning 

by a deep tone. You will have the chance to try this later and see: it works :-) 

Create a new file called “speaker.c” and add the following lines: 

#include <system.h> 
 
// Play sound using built in speaker 
void  play_sound (u32int nFrequence ) { 
 u32int Div ; 
 u8int tmp ; 
 
 //Set the PIT to the desired frequency 
 Div = 1193180  / nFrequence ; 
 outportb (0x43 , 0xb6 ); 
 outportb (0x42 , (u8int ) (Div ) ); 
 outportb (0x42 , (u8int ) (Div >> 8)); 
 
 //And play the sound using the PC speaker 
 tmp = inportb (0x61 ); 
 if (tmp != (tmp | 3)) { 
  outportb (0x61 , tmp | 3); 
 } 
} 
  
 //make it shutup 
void  nosound () { 
 u8int tmp = (inportb (0x61 ) & 0xFC); 
 outportb (0x61 , tmp ); 
} 
  
 //Make a beep 
void  beep () { 
 play_sound (1000); 
 timer_wait (5); 
 nosound (); 
} 

Listing 23: "speaker.c" to control the speaker 

The function “play sound” uses the command register to tell the PIT that we want to change the 

settings of the second channel, namely the speaker. Feel free to calculate “0xb6” to a decimal digit 

and try to understand the properties we talked about in chapter 6. Afterwards, we write our 

frequency to the data register of the pit. LAST PART. 

“nosound” instead stops playing the sound.  XX 



The function “beep” uses one of our timer functions and beeps for exactly 5 ticks which is pretty 

short but sufficient to get the attention of the user. 

Now we add these three lines to the “system.h” to make our functions available in the other parts of 

our OS: 

/* SOUND.C */  
extern  void  play_sound (u32int nFrequence ); 
extern  void  nosound (); 
extern  void  beep (); 

Listing 24: Extern declarations for the speaker 

Try using “beep();” in the main function (after allowing interrupts: “__asm__ __volatile__ ("sti");”). If 

you like you can add a beep in the “fault_handler” function in “isrs.c”. Another idea to use the sound 

function is to write a row of beeps and waits with different frequencies. Here is a link that shows the 

frequencies to the corresponding tunes so that you can use your favorite song as starting melody for 

your OS. But keep in mind that a speaker tune could really be annoying :-) 

Now we have written something to show your friends. Time for some serious theory again! 

Hint: What are these strange types like “u32int”? I created some type definitions in “system.h” which 

help to avoid typing a lot as well as it helps to determine if a type is signed or not.  Signed means that 

negative values are allowed. Unsigned only allows values >=0.  

8 Administrating memory with the Global Descriptor Table  

With the GDT (Global Descriptor Table) we answer another question from the beginning of this 

tutorial. How do we manage the memory and avoid access to occupied disk space? Well, the GDT is 

actually only a part of the memory management system but it is able to define which memory areas 

(segments
9
) are executable or data! The real memory management (which block is occupied and 

which one is free is told via the paging functions that we will take care about later on). Furthermore, 

the GDT can tell the kernel about so called segment violations that a process tries to access invalid 

memory. The kernel is then supposed to kill this process. 

But the GDT is able to hold other information than segment descriptors and includes other OS parts 

as well. Namely the Task State Segment (TSS), the Local Descriptor Table (LDT) and the Call Gate. 

8.1 Task State Segment 

The TSS contains information on tasks running on the system: 

- Processor register states – Very helpful if we have to switch between different tasks (multi 

tasking) to save and restore process states. 

- I/O Port permissions – A bit array keeps track on all permissions a task has. When a task 

wants to access an IO port, for instance our VGA card as seen in chapter XX to set the 

blinking cursor, the permission is requested. It the value in the bit array corresponding to the 

VGA controller is 0 the access is granted. If it is 1, the access is denied. 
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- Inner level stack pointers – The TSS contains 6 fields to store a new stack pointer when we 

change the privilege level. As privilege level you could imagine to execute a program as 

admin and then change the privilege level to user. Of course, a user has not as much rights as 

an administrator. With these inner level stack pointers we can manage separate stacks. For 

example for our kernel and for applications. 

- Previous TSS links – Linking TSS is once again be helpful for task switching. When we have to 

access another process with another privilege level we switch our TSS, fulfill our duty and 

then switch back to the TSS of the task we came from. 

Hint: All TSS are linked in the Task Register which is a special segment and can (only) partially been 

accessed by programmers to read task information. You might know the Linux command “ps” which 

shows all running processes including process ID. This application uses the TSS to determine 

information on the different processes. 

8.2 Local Descriptor Table 

The LDT has almost the same structure as the GTD but it is process specific. This means through the 

LDT we are able to give each process its own memory. The GTD has to contain an entry to the LDT 

descriptor otherwise we will not be able to create a reference to it. 

8.3 Call Gate 

Call Gates are used to enable a process of a lower privilege level to execute code of a higher privilege 

level. This is necessary to enable programmers later on to use kernel functions such as system calls. A 

kernel mostly has a privilege level of 0 (the highest) and an application generally has a privilege level 

of 3 (lowest). 

Okay, now we know what the tasks of a GDT are. But how does it work? You can imagine the GDT as 

a list of 64 bit entries. An entry contains the segment where the region we define starts, where it 

ends and the privilege level a process has to have to access this segment. There privilege levels are 

there to prevent the kernel to crash if an application tries to execute commands it is not supposed 

to. A good example is “cli” and “sti” to forbid and allow interrupts. If an application tries to access 

these commands in a non privileged sector an exception will be thrown. 

The first entry (0) in the GDT is defined as the NULL descriptor. If a segment register is set to 0 it will 

cause a General Protection Fault (See IRS13).  

 

Image 5: Entry in the Global Descriptor Table 

At first, I will define the fields in an entry: 

Field Description 

P (Present) Segment is present or not 



DPL (XX Privilege Level) In which ring does the process have to be to 

access this segment? 

DT (Descriptor Type)  

Type  

G (Granularity) 0 = 1 byte, 1 = 4 kbytes 

D (Operand size) 0 = 16 bit, 1 = 32 bit 

0 Always 0 

A (Available for system) Is Always set to 0. 

Segment length Start and end of the segment 

Table 3: GDT entry explanation 

In our tutorial we will use a GDT with only three entries. The first one is the NULL descriptor, the first 

one points to our code segment is and the second one tells the kernel where it can find the data 

segment. 

Create a new file called “gdt.c” and add the following code. 

#include <system.h> 
 
// This struct defines a GDT entry. Once again we d efine it 
// as packed to keep the structure the CPU expects the 
// entry to have. We do not want the compiler to op timize 
// our code! 
struct  gdt_entry 
{ 
    unsigned  short  limit_low ; 
    unsigned  short  base_low ; 
    unsigned  char  base_middle ; 
    unsigned  char  access ; 
    unsigned  char  granularity ; 
    unsigned  char  base_high ; 
} __attribute__ ((packed )); 
 
// The GDT pointer defines the range of our GDT in memory. 
struct  gdt_ptr 
{ 
    unsigned  short  limit ; 
    unsigned  int  base ; 
} __attribute__ ((packed )); 
 
// The GDT with three entries and a pointer to our GDT. 
struct  gdt_entry gdt [3]; 
struct  gdt_ptr gp ; 
 
// This function is placed in start.asm. 
extern  void  gdt_flush (); 
 
// Put a descriptor in the GDT 
void  gdt_set_gate (int  num, unsigned  long  base , unsigned  long  limit , 
unsigned  char  access , unsigned  char  gran ) 



{ 
 // The address of the descriptor 
    gdt [num].base_low = (base & 0xFFFF); 
    gdt [num].base_middle = (base >> 16) & 0xFF; 
    gdt [num].base_high = (base >> 24) & 0xFF; 
 
    // Limits of the descriptor 
    gdt [num].limit_low = (limit & 0xFFFF); 
    gdt [num].granularity = ((limit >> 16) & 0x0F); 
 
    // Granularity and access flag 
    gdt [num].granularity |= (gran & 0xF0); 
    gdt [num].access = access ; 
} 
 
// Setup the GDT pointer and create the three entri es (gates) we 
// want to use: 
// 1: Null descriptor (See Tutorial) 
// 2: Describes the code segment (Base address is 0 , limit is 4GBytes, 
//  use 4 KBytes granularity, 32bit coding and a Co de Segment 
descriptor. 
// 3: Data segment which is the same as the data se gment except the access 
//   flag which tells it is a data segment. 
void  gdt_install () 
{ 
    /* Setup the GDT pointer and limit */  
    gp .limit = (sizeof(struct  gdt_entry ) * 3) - 1; 
    gp .base = &gdt ; 
 
    gdt_set_gate (0, 0, 0, 0, 0); 
    gdt_set_gate (1, 0, 0xFFFFFFFF, 0x9A, 0xCF); 
    gdt_set_gate (2, 0, 0xFFFFFFFF, 0x92 , 0xCF); 
 
 // Flush the old GDT and install the new one. This code 
 // can be found in start.asm. 
    gdt_flush (); 
} 

 

Listing 25: The code of the Global Description Table in "gdt.c" 

The code is pretty straight forward. We create a packed struct which contains all information on our 

memory segment entry. Then we create a struct which is basically a pointer to the GDT. The function 

“gdt_flush” will later on be placed in “start.asm” and flush the old GDT (which has been initialized by 

the GRUB loader) and initialize our new GDT. Then we create a function to put an entry into the GDT 

and finally we use an initialization function for the GDT which creates three entries: 

- The NULL descriptor 

- Entry for the code segment 

- Entry for the data segment 

Finally, the new GDT is installed. Therefore we add the following lines right behind “; Place holder for 

GDT code”  to “start.asm”. 

; We set up the segment registers to point to our G DT.  
; This will set up our new segment registers. We ne ed to do  
; something special in order to set CS. We do what is called a  
; far jump. A jump that includes a segment as well as an offset.  



; This is declared in C as 'extern void gdt_flush() ;'  
global  _gdt_flush     ; Allow to call _gdt_flush from anywhere  
extern  _gp            ; Tells that _gp will be found outside start.asm (i n 
gdt.c)  
_gdt_flush : 
    lgdt [_gp]        ; Load the GDT with our '_gp' which is a special 
pointer  
       ; The brackets say that we pass a function, 
not the content  
        
    mov ax, 0x10       ; 0x10 is the offset in the GDT to our data segment  
    mov ds, ax 
    mov es, ax 
    mov fs, ax 
    mov gs, ax 
    mov ss, ax 
    jmp 0x08 :flush2   ; 0x08 is the offset to our code segment: Far jump!  
flush2 : 
    ret               ; Get back to the C code after executing this one.  

Listing 26: Installing the GDT in start.asm 

Add the function prototypes to “system.h”. 

/* GDT.C */  
extern  void  gdt_set_gate (int  num, unsigned  long  base , unsigned  long  limit , 
unsigned  char  access , unsigned  char  gran ); 
extern  void  gdt_install (); 

Listing 27: Function prototypes for "gdt.c" 

We are done so far, add “gdt_install” to our main function (as first line since this is an important one) 

and run the OS. You will not see anything; this is only an internal (but nevertheless an important) 

change. 

Hint: You will see that we are still receiving output from the timer. Feel free to uncomment the line 

from “timer.c”: 

puts ("One second has passed\n" );  

 

9 Extended Output 

We only wrote functions to output strings and chars which is was basic stuff to make quick progress 

and keep you with me! But what if we want to put out other data types like integers or floats?  

 To that point we did everything on our own. We did not use any libraries or external header files. 

This will change from that point on since I cannot explain every single piece of code! This would 

result in a ten thousand site tutorial and would surely get very confusing! Furthermore, I will not 

explain as detailed as I did before since we are producing more and more code that appears 

repeatedly.  But no reason to panic! The constructs that serve the topic “Operating System 

programming” will still be well commented and explained! 

Create a new file “extio.c”. This file will add two new functions to print out strings that may contain 

arguments. 



// First include that we not write on our own 
#include "stdarg.h" 
 
// A temp char buffer 
char  _buffer [64]; 
 
// Returns the number representation of value "val"  to the base "base". 
static  inline char  *strfmtint (unsigned  long  val , int  base ) 
{ 
 // We cannot have a base > 36 
 if(base > 36) 
  return "" ; 
  
 // If the value is 0 the result is 0, too. 
 if(val == 0) 
  return "0" ; 
  
 const  char  *digits = "0123456789abcdefghijklmnopqrstuvwxyz" ; 
 char   *p = _buffer + 64; 
  
 int  i = 0; 
 *p = '\0' ; 
  
 // Make each char of "val" fit into the base repres entation 
 // we want. For example, a pointer (represented by a hex) has 
 // a base of 16 and can therefore only be represent ed by 0-16 of 
 // the char array. 
 while(val ) 
 { 
  *--p = digits [val % base ]; 
  val /= base ; 
   
  i ++; 
 } 
  
 return p ; 
} 
 
// Takes the format char array and browses it for " %"s which 
// indicates that we have to replace the following char by 
// a value from the argument list. 
// The final string is the "str" parameter whereas the result 
// is the number of written parameters. 
int  vsprintf (char  *str , const  char  *format , va_list arg ) 
{ 
 int  written = 0; 
  
 // Iterate through the format char array 
 while(*format != '\0' ) 
 { 
  // If we hit a "%" which is the indicator for a rep lacement 
  if(*format == '%' ) 
  { 
   format ++; 
    
   switch(*format ) 
   { 
    // Is our parameter a char? 
    case 'c' : 
    { 
     char  temp = va_arg (arg , int ); 
     str [written ] = temp ; 



    } 
     break; 
      
    case 's' : 
    { 
     // Is our parameter a string? 
     char  *string = va_arg (arg , char  *); 
      
     while(*string != '\0' ) 
     { 
      str [written ] = *string ; 
       
      written ++; 
      string ++; 
     } 
      
     str [written ] = ' ' ; 
     written --; 
    } 
     break; 
      
      
    case 'i' : 
    { 
     // Is our parameter an integer? 
     unsigned  long  temp = va_arg (arg , unsigned  
long ); 
     char    *string = strfmtint (temp, 
10); 
      
     while(*string != '\0' ) 
     { 
      str [written ] = *string ; 
       
      written ++; 
      string ++; 
     } 
      
     str [written ] = ' ' ; 
     written --; 
    } 
     break; 
      
      
    case 'p' : 
    { 
     // Is our parameter a pointer? //Return a 
hexadecimal representation 
     unsigned  long  temp = (unsigned  
long )va_arg (arg , void  *); 
     char    *string = strfmtint (temp, 
16); 
      
     str [written ] = '0' ; 
     written ++; 
      
     str [written ] = 'x' ; 
     written ++; 
      
     while(*string != '\0' ) 
     { 
      str [written ] = *string ; 



       
      written ++; 
      string ++; 
     } 
      
     str [written ] = ' ' ; 
     written --; 
    } 
     break; 
      
    case 'x' : 
    { 
     // Is our parameter a XX? 
     unsigned  long  temp = va_arg (arg , unsigned  
long ); 
     char    *string = strfmtint (temp, 
16); 
      
     while(*string != '\0' ) 
     { 
      str [written ] = *string ; 
       
      written ++; 
      string ++; 
     } 
      
     str [written ] = ' ' ; 
     written --; 
      
    } 
     break; 
      
    case '%' : 
     // Or do we really want to write a "%"? 
     str [written ] = '%' ;    
  
     break; 
      
    default: 
     str [written ] = '%' ; 
     written ++; 
      
     str [written ] = *format ; 
     break; 
   } 
  } 
  else  
  { 
   str [written ] = *format ; 
  } 
   
   
  written ++; 
  format ++; 
 } 
  
 str [written ] = '\0' ;  
 // Return the numbers of written parameters 
 return written ; 
} 
 
// Convers a format char array to a char array 



int  sprintf (char  *dst , const  char  *format , ...) 
{ 
 // Create an argument list 
 va_list param ; 
 // Put our arguments (format) into this argument li st 
 va_start (param, format ); 
  
 // Converts the format string to a string 
 int  written = vsprintf (dst , format , param ); 
  
 // Close the argument list 
 va_end (param); 
  
 // Return the number of parameters written 
 return written ; 
} 
 
// Our final function to simply put out a char arra y 
// with arguments. 
void  putfs (const  char  *format , ...) 
{ 
 // Once again read arguments, convert, ... 
 // but this time we use "puts" to outpur the 
 // string to our console. 
 va_list param ; 
 va_start (param, format ); 
  
 char  temp [1024]; 
 vsprintf (temp, format , param ); 
  
 puts (temp); 
 va_end (param); 
} 

Listing 28: "extio.c" for advanced output 

Here the c code starts to get tricky since we use routines which are rarely used when writing 

“normal” programs. These routines are, for example, to change the Zahlensystem of a variable in 

“strfmtint” or to read argument lists from a function header with “va_list”, “va_start” and “va_end”. 

Fortunately, we only have to understand three functions which serve one goal: To convert 

parameters that have a format like: 

(“My name is %s. I am %i years old.”, “Jonas”, “25”) 

To a string like: 

“My name is Jonas. I am 25 years old.” 

Do not spend too much time on understanding each function in detail. This actually does not belong 

to the functionality of an OS. Nevertheless, it is rather useful to print values to check if the 

procedures we write work properly.  

As usual, put the function header of of the “putfs” (which means “put formatted string”) into our 

“system.h”. Feel free to add the following line to our main method: 

putfs ("You are using %s in version %i." ,"JofreOS" ,1); 

 



10 Paging 

Now we are getting serious and start to make a plan to create kind of a file system. Paging is the first 

step in the right direction because it enables us to virtualize our memory and throw memory 

exceptions when a process tries to access memory that is locked or does not exist.  

Let us create a simple application: 

int  main (char  argc , char  **argv ) 
{ 
  return 0; 
} 

Listing 29: A simple application 

When you execute this program a start address will be set which identifies where the kernel has to 

begin executing the code. Let us assume this address is at 0x20120A8 which is at ~32mb in the 

address space. Why do you think a pc with less RAM will be able to execute this code without any 

problems? Right, because the memory is virtualized by a paging mechanism. If the user or the kernel 

tries accidently to access an unmapped part of memory the processor will raise a page fault 

exception (We defined it already in the chapter on interrupts). But how can the processor know 

about our paging routines? Fortunately, the x86 structure provides a basic functionality for memory 

mapping which is placed in the Memory Management Unit (MMU) and helps us to create a layer 

between the CPU and memory. 

Paging works by splitting the virtual address space up by parts of 4 kb. Pages can then be mapped on 

frames. 

10.1 Page Entry 

Each page has a size of 4 KB as well as a descriptor which shows which frame it is mapped to. Frames 

and pages are aligned on 4KB boundaries (4kb = 1000bytes). The least 12 significant bits of the 32bit 

word are always 0 which can be useful to save information on the page/frame in this address space. 

This information should be illustrated by the following picture: 

 

Image 6: Page Entry 

 

- Frame address: As the name says the first 20 bits contain the physical address of the frame. 

- Available: 3 unused bits which can be used by the kernel. 

- Reserved: Internally used by the CPU. 

- D (Dirty): The page has been written to. 

- A (Accessed): Is set when the page has been accessed. This value is changed by the CPU. 



- Reserved: 2 Bits which are used internally by the CPU. 

- U/M: User mode or kernel mode page. User mode code cannot write to a kernel mode page. 

- R/W: If this bit is set the page can be written to. If it is not set the page cannot be written to 

unless code that runs in kernel mode wants to write to the page. 

- P (Present): Says if the page is present in memory. 

If you have used your calculator wisely you will have figured out that a for a memory size of 4GB we 

need a mapping table of 4MB. The size of a table to store the page information will grow 

proportionally with the size of the memory. Intel came up with an intelligent idea and invented a 2 

component system. The CPU knows about a so called page directory which needs, once again, 4KB. 

This page directory consists of n entries to page tables which might contain page table entries to 

describe address space. If the page tables are empty the pointer to it will be freed and the entry is 

being removed from the directory table by setting the present flag to 0.  

10.2 Page faults 

When a process accesses invalid memory areas the Memory Management Unit throws a page fault 

exception (ISR14) (see chapter XX). These forbidden accesses are: 

1. Reading from or writing to a memory area that is not mapped. 

2. A process in user mode tries to write to a read only page. 

3. A process in user mode tries to access a kernel only page. 

4. A page table entry is corrupted – the reserved bits have been overwritten. 

Remember that some interrupts push an error code on the stack? The page fault exception is one of 

the exceptions that pass us information on what happened: 

- Bit 0: If bit 0 is NOT set, the page was not present. 

- Bit 1: If set, the operation which caused the fault was a write operation, otherwise it was a 

read operation. 

- Bit 2: If set, the process was running in user mode, else in kernel mode. 

- Bit 3: If set, the exception was raised because reserved bits were overwritten. 

- Bit 4: If set, the fault occurred during an instruction fetch. 

Additionally, the processor saves the address that caused the exception to the second control 

register.  

To begin we need some memory functions which enable us to allocate memory before we can 

allocate memory :-) The functions we declare at the beginning serve for the heap that we will 

implement in the next chapter, too. 



10.3 Adding a debugging function to extio.c 

At the beginning we had full control over our OS. But now we implemented just another interrupt 

which works, like his many siblings, on his own. The PIT does nothing else but running on his own. So 

it is time to write a small function that holds the entire OS when an error occurs. This function we will 

call “puterror”. It can easily be built by functions we already defined. Add this function to “extio.c”: 

void  puterror (const  char  *message, const  char  *file , int  line ) 
{ 
 // We stop our entire OS 
    asm volatile ("cli" ); // Disable interrupts. 
 settextcolor (15,4); 
    putfs ("Error: (\n %s\n) at %s: %i\n" ,message,file ,line ); 
    // Halt the OS 
    for(;;); 
} 

Listing 30: The error function "puterror" in extio.c 

A very handy feature of GCC is that its pre-compiler can determine the file name and the line number 

of the line it currently parses. This allows us to create the following define in “system.h”: 

#define PUTERROR(msg) puterror(msg, __FILE__, __LIN E__);  

Listing 31: Define to automatically find source file and line number 

Add "extern  void  puterror (const  char  *message, const  char  *file , int  line );” 

to “system.h” as usual. 

No you can use either “puterror” with one parameter and let the compiler find the source file and 

line number of the error. Or you use the function with three parameters and insert source file and 

line number manually. 

 

To be continued…  
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