

Writing an Operating System

Jonas Freiknecht

www.jofre.de

October 2010 – April 2011

Version 0.3

BETA: This book is still in a beta status, meaning it is not done. At the moment I try to find a way to

implement a working paging mechanism which is a little bit more flexible than the one in the

“Step10beta” folder. This is the reason for me to publish this tutorial at the current state. If you have

an idea how to get paging running (Including a heap and memory allocation algorithm feel free to

contact me. You could be the reason for me to keep writing ☺).

Content

Content .. 2

I Writing an Operating System .. 4

I.I Introduction ... 4

I.II Goal of this tutorial ... 4

I.III What do I need? .. 5

I.IV Structure of this tutorial .. 6

I.V Compiling ... 7

I.VI What is an operating system? ... 7

I.VII Copyright .. 8

1 The boot loader .. 8

2 The entry to our OS .. 11

2.1 Entering the world of C ... 13

3 Writing on screen ... 15

4 Let me interrupt you .. 21

5.1 Interrupt Descriptor Table ... 21

4.2 Interrupts to handle exceptions .. 23

4.3 Interrupt Requests to handle hardware messages ... 32

5 Our first input device – the keyboard .. 37

6 The Programmable Interval Timer ... 39

7 Sounds .. 42

8 Administrating memory with the Global Descriptor Table .. 43

8.1 Task State Segment ... 43

8.2 Local Descriptor Table ... 44

8.3 Call Gate .. 44

9 Extended Output .. 47

10 Paging ... 52

10.1 Page Entry .. 52

10.2 Page faults ... 53

10.3 Adding a debugging function to extio.c .. 54

Literature ... 55

I Writing an Operating System

October, 2010

www.jofre.de

I.I Introduction

I read a lot of stuff on the internet about Operating systems and came to the fantastic idea to write

my own one. This is a little fictitious you might think. Of course it is! But although I was sure that it

will be a hard piece of work I started making a structure and defined the working packages that will

be included in the final – let us call it OS (Operating System) from now on – OS.

One very good reason to convince me starting this task is that I – as many of you, too, I guess – learn

by doing. As you will see I explain a chapter or a function and try to put the idea into code. So you

can directly understand what I just explained. In my eyes this is the way that enables us all to learn

easily and quickly.

And now I have to pull the break. Of course, we will not write the perfect OS that is comparable to

Windows or Linux. We will write a very short version that – in the end – works and shows the general

aspects of such software.

I promise in this book I will concentrate on the most important facts and I will leave out long

explanations and historical facts. Whoever is interested in more details I recommend the book

“Operating Systems – Design and Implementation” by Tannenbaum and Woodhull which is the Bible

of all OS books.

In this text you will often find hints which are a nice to have but are not directly belonging to the

topic of operating systems
1
.

Now, let us define what we will learn in this tutorial and what our OS is supposed to be able to.

I.II Goal of this tutorial

In this tutorial we will write a small operating system which should help you to learn the basic parts:

- Boot loader – How do we tell our BIOS (basic input/output system) to boot our OS?

- Kernel – Why is the kernel called “core” of an OS? How can we access and control resources

such as memory or processors?

o System calls – How can we enable programmers to use these resources easily and

keep them away from accessing our hardware directly?

o Process management – Which process gets how much time of the CPU (central

processing unit) and how do processes communicate between each other?

1
 But I did spend time writing them so invest the few minutes and read them! :-)

o File systems – How to write to hard disk / floppy disk? How do we know which space

on the disk is free and which area is in use? What happens when high language

procedures like “write” are used?

o The shell – How do we communicate with our OS and how are commands parsed?

How do I specify files or other processes as input / output of a process?

o Devices – How do I access hardware such as my graphic card?

Last but not least, you will learn to compile the code we write which is not very easy! I will show you

how which tools we use and how we combine our commands to a batch file.

Hint: All tools we use are free!

I.III What do I need?

I have made the decision that use Windows to write the OS. If you are using Linux do not panic! Equal

tools are available under Linux, too. All you need is an assembler, a C compiler, a virtual machine,

GRUB (Grand Unified Bootloader) and some disk tools.

- Assembler - The entrance code to our kernel is written in assembler and – unfortunately –

cannot be written in C
2
. I decided to work with NASM (Netwide Assembler) which can be

downloaded for free here: http://www.nasm.us/

Hint: There are different assemblers which are not compatible between each other. Whoever tried

to compile a GAS-Assembler file with NASM will know that the expressions in the language differ a

lot. For this tutorial I have chosen NASM because it is easy to read and well documented.

- C compiler - The rest of our code is written in C. This code will be compiled using DJGPP

which can be downloaded here: http://www.delorie.com/djgpp/zip-picker.html

Hint: Installing DJGPP is a little tricky because there is no installer that let you choose the needed

components. You have to download each package on its one and unzip it into a single directory.

Hint: If you are installing DJGPP pay attention that you add the necessary paths
3
 of the bin directory

in your system path dir. This enables your BAT-file to find the applications we are using without

entering entire paths. The same holds for NASM!

- The Virtual Machine - As a Virtual Machine you can take probably every Tool you like. I have

chosen Virtual PC because it is easy to use and I believe it is a little faster than for instance

VM Ware and does not create some weird network connections that slow down your system.

Furthermore, it is able to create Virtual Floppy Disk Images.

- RawWrite - Helps you to copy images to that we create later onto a (virtual) floppy disc. This

tool can be found here: http://www.chrysocome.net/rawwrite

2
 Defining our stack as well as defining interrupts is easier in assembler if not impossible in C.

3
 http://cse.iitkgp.ac.in/pds/software/gcc/DJGPP.html

- Virtual Floppy Drive - If you have no floppy drive of if you want to work with a virtual

machine you will need to download VFD (Virtual Floppy Drive):

http://sourceforge.net/projects/vfd/

- GRUB4DOS - This is the simple boot manager to load our kernel. It is very easy to use and we

do not need to write an own boot loader! http://download.gna.org/grub4dos/

- Build Floppy Image - A simple tool that can create floppy images that can be written on

(virtual) floppy disks: http://www.nu2.nu/bfi/

- A good text editor, I propose Notepad++ which has code highlighting for nearly every

language that is available on earth. http://notepad-plus-plus.org/

- Coffee

As you can see we are using a lot of different tools (8!) but be aware that you will need some of them

only when it comes to compiling. Most time you will spend with Notepad++ :-)

I.IV Structure of this tutorial

In the following paragraphs I will show you the code that is newly added to the OS. At the end I will

tell you the lines that are added to our compilation batch file so that you can test our output

immediately. The code of each chapter can be found in an archive that is called like the chapter. This

helps you to avoid typos in your code or if you want to skip a chapter you can easily take the code

from the current archive. I will add a lot of comments to the code so that I try to avoid explanations

afterwards.

Technically seen we will move from left to right as seen in illustration 1. First, we will see how a boot

loader works and create a dynamic image that we only need to copy our kernel on. Afterwards, we

will create the entry point to the kernel in assembler. This assembler code now calls a main function

that you might now from a standard C program. Now that our kernel is running and waiting for

orders we can create other programs that can be run on our system. These programs use system

calls to use the resources of the hardware. System calls are a set of functions we will offer to

programmers to build an abstraction layer between hardware and software.

Image 1: Structure of the Operation System

I.V Compiling

In my eyes, compiling is a tricky part, especially under Windows because Linux has many tool

preinstalled when it comes to compiling and creating images. When you have installed all the tools

mentioned above it is time to create a batch file that compiles our code.

@echo off

echo Assembling...

nasm -f aout -o start.o start.asm

echo Done!

echo Compiling...

rem -> More to come here

echo Done!

echo .. and Linking!

 ld -T link.ld -o kernel.bin start.o

echo Done!

pause

Listing 1: Compilation Script „build.bat“

As you can see we process our compilation in 4 steps.

1) Assembling our assembly code which is basically the entry point to our OS. This code cannot

be written in C this is why we have to use a (rather short) piece of assembler code.

2) Compiling the C code. This will be done by DJGPP’s GCC. For each source and header file we

add we have to add a line to the batch file.

3) Linking the object files. The compiler produces so called object files with the extension .o.

These files will have to be linked to a binary file, in our case “kernel.bin”. This will be done by

DJGPP’s linker called “ld”. Similar to step 2 each object file that is created by the GCC has to

be added to the linker.

4) Finally we will have to copy the “kernel.bin” to a floppy disk that is prepared with our boot

manager GRUB. This step is explained in detail in chapter XX.

Hint: If the batch file tells you that either “nasm”, “gcc” or “ld” is an unrecognized command you will

have to check if you added the necessary directories to your class path AND rebooted your system.

I.VI What is an operating system?

An OS can be characterized by two abilities. It extends our computer by separating hardware from

software and it manages its resources.

- An OS separates the Hardware Layer from the Application Layer. When a programmer

writes a tool like the Notepad he does not want to care about free memory, free RAM,

determining and writing to free hard disc sectors. These tasks will be done by the OS by so

called
4
 system calls which extend our machine.

- An OS manages resources. Computers consist of processors, memories, timers, disks, mice,

network interfaces, and printers etc. Tasks of an Operating System are to manage the

allocation of processors, memory and IO devices.

But what about process management, file management, a user system and the shell? Of course,

these are all parts of an OS but each topic that you can image can be put under the two topics above.

I.VII Copyright

If you want to publish parts of this book, do it! But please contact me (I want to know if the time I

spent writing this tutorial was worth it) and give credits. That would be great. Thanks.

1 The boot loader

Each operating system needs an entry point that is recognized by the bios and says “Hey, I can

provide a bootable binary!”. This entry point is called boot loader and has a very typical structure so

that it is recognized as such:

- It is (at least) 512 bytes long

- It ends with the signature 055h, 0AAh on the last two bytes

Hint: A boot loader can theoretically be bigger than 512 bytes. The most important thing is that the

bytes at position 511 (055h) and position 512 (0AAh) are correct.

To train our assembler skill we could write this piece of code on our own but on the one hand this is a

tricky process because you can easily make mistakes in assembler and on the other hand there is an

easy to apply out of the box boot loader that is, furthermore, free to use: The Grand Unified

Bootloader (GRUB).

Hint: If you are interested in a professionally written boot loader have a look at the one of the free

and open source Minix OS. There even exists a tutorial on how its boot process works in detail
5
.

Maybe you already heard about GRUB and want to know how this fine software works. This is easy,

we will create a floppy disk image, put copy a file from the GRUB archive on it, create a simple

configuration file, use a tool to make our image bootable and copy our binary file that contains our

kernel on it.

This image can then be written on a (virtual) floppy disk and when we then start our computer we

will see a nice boot screen which let us pick the OS we want to boot.

To build a boot image we need two tools:

4
 In chapter XX we will learn more about system calls.

5
 http://www.os-forum.com/minix/boot/

- BFI (Build floppy image)

- GRUB4DOS

Let us create the image:

1) Create a folder named “floppy” and put the file “grldr” from the GRUB archive in it.

2) Execute BFI with the following parameters:

bfi -t=144 -f=floppy.img floppy

This creates us a 1.44 MB image called floppy.img and takes the folder “floppy” as source.

3) Now we install GRUB on the image and make it bootable:

bootlace.com --fat12 --floppy floppy.img

4) Write the “floppy.img” onto a (virtual) floppy disk by using RawWrite. Now open the disk and

create a new file called “menu.lst”. This is where GRUB reads the operating systems from

when it is booted.

5) Write these three lines in “menu.lst”:

title My first OS

kernel /kernel.bin

boot

The title is the string that is shown in the OS selection dialog, kernel is the absolute path to

the kernel binary that we will start to create in chapter 1 and boot tells GRUB that he should

boot the kernel when our OS is selected.

I will include the “floppy.img” in the archive so that you can use it.

Next, start Virtual Floppy Drive (VFD) and start the driver.

Image 2: Starting the VFD driver

Then you select the „Drive0“ tab and open a virtual floppy disk which can be found in each “step”

folder (but is always the same). Assign a drive letter on top of the screen. I will use A: in this tutorial.

Image 3: Open a virtual floppy disk

You will see that you have a working floppy drive that you can use now. If you want you can close

VFD. Once the driver is running it will not stop until you reboot your system.

Now, you can start VirtualPC. Click „Floppy Disk“ in the main menu, select „Control physical drive A:“.

The Virtual Machine will recognize you virtual drive „A:“ as own drive so that you can boot from it.

Hint: When you want to use the „img1.vfd“ in VirtualPC instead of a virtual floppy drive you need to

start „VFD Control Panel“, select the tab „Drive0“ and „Save…“ the content of your drive „A:“ to the

„img1.vfd“.

Hint: You will also have to create a virtual system. Therefore, a HDD size of 64 mb and a RAM size of

64 mb is more than sufficient.

Illustration 4 shows what your screen should look like when you boot from your floppy disk.

Image 4: GRUB showing our kernel

2 The entry to our OS

Now we finally write code!

; This is our entry point. As mentioned in this tut orial we write this
code in assembler
; since it is easier to define our stack here and t o mark this file as
bootable binary for
; GRUB.

; We are moving in a 32 bits environment.
[BITS 32]
global start
start :
 mov esp, _sys_stack ; This points the stack to our new stack area
 jmp stublet

; This part MUST be 4byte aligned so that GRUB can read the magic number
(boot signature),
; the flags and the checksum.
ALIGN 4

; This part is to make our kernel GRUB compatible a nd tell grub some
flags, for
; instance that we use the AOUT binary format inste ad of ELF. This is
neccessary
; because we use DJGPP under Windows.

mboot :
 ; Multiboot macros to make a few lines later more r eadable
 MULTIBOOT_PAGE_ALIGN equ 1<<0
 MULTIBOOT_MEMORY_INFO equ 1<<1
 MULTIBOOT_AOUT_KLUDGE equ 1<<16
 MULTIBOOT_HEADER_MAGIC equ 0x1BADB002
 MULTIBOOT_HEADER_FLAGS equ MULTIBOOT_PAGE_ALIGN |
MULTIBOOT_MEMORY_INFO | MULTIBOOT_AOUT_KLUDGE
 MULTIBOOT_CHECKSUM equ -(MULTIBOOT_HEADER_MAGIC +
MULTIBOOT_HEADER_FLAGS)
 ; Extern tells the compiler that the label can be f ound in another
module.
 EXTERN code , bss , end

 dd MULTIBOOT_HEADER_MAGIC
 dd MULTIBOOT_HEADER_FLAGS
 dd MULTIBOOT_CHECKSUM

 ; When we build our kernel the assembler fills thes e values
automatically.
 ; For mboot the address of the "mboot" label is set . This is to show
GRUB
 ; where it can find which section.
 dd mboot
 dd code
 dd bss
 dd end
 dd start

; Everything is defined properly. Now we can start our main loop in
assembler.
stublet :
 jmp $

; Place holder for GDT code.

; Place holder for interrupt code.

; The bss section holds data that is not jet define d. For example, a "dd"
; would be ignored by the compiler.
; Now we define our stack of 8KB. Remember that a s tack actually grows
; downwards, so we declare the size of the data bef ore declaring
; the identifier '_sys_stack'
SECTION .bss
 resb 8192 ;reserve 8KB
_sys_stack :
Listing 2: The kernel called "start.asm"

What we do here is easy:

1) We save a pointer to our stack (What is a stack?
6
) in the ESP register.

2) We define a lot of macros to enable multi booting for our OS in GRUB.

6
 A stack is a region in our memory where we can store values of registers, variables and other objects. A stack

can be accessed via push (write) and pop (read). More on stacks can be found here:

http://en.wikipedia.org/wiki/Stack_%28data_structure%29

3) We define an endless loop that keeps our OS alive.

4) We define our stack.

What does our OS do so far? Nothing :-) But if you compile the code from the folder “Step 1” by

clicking the batch file “build.bat” and following the last 2 steps from the chapter “Compiling” you will

see that the image is recognized as Operating System and you can boot from a disk if you try.

2.1 Entering the world of C

For now, this is all the assembler code we need. The next parts can be realized using C code. Later,

when it comes to interrupts we will have to switch back to assembler again.

What we do now is we declare an extern function “_main” and call it. Therefore, add the following

two lines beneath the line “stublet:”.

stublet :
 extern _main
 call _main
 jmp $
Listing 3: Calling our main method

Hint: It is not necessary to call the entry function to our C code “main”. I have only chosen this name

because C programmers might be used to this name and see it as entry point to a program and so to

our OS.

Now that we have called the function we have to define it! Create a new file “main.c” and fill it with

the following functions.

Hint: The underscore in “_main” is there because the compiler adds a “_” to every function and

variable declaration. This is to avoid naming conflicts.

#include <system.h>

// copy count bytes from src to dest
void *memcpy(void *dest , const void *src , size_t count)
{
 const char *sp = (const char *)src ;
 char *dp = (char *)dest ;
 for(; count != 0; count --) *dp++ = *sp++;
 return dest ;
}

// set count bytes in dest to val
void *memset(void *dest , char val , size_t count)
{
 char *temp = (char *)dest ;
 for(; count != 0; count --) *temp++ = val ;
 return dest ;
}

// Same as above, but this time, we're working with a 16-bit 'val' and
dest pointer.
unsigned short *memsetw(unsigned short *dest , unsigned short val , size_t
count)
{
 unsigned short *temp = (unsigned short *)dest ;

 for(; count != 0; count --) *temp++ = val ;
 return dest ;
}

// Returns the length of a character array.
size_t strlen (const char *str)
{
 size_t retval ;
 for(retval = 0; *str != '\0' ; str ++) retval ++;
 return retval ;
}

// Reading from IO ports
unsigned char inportb (unsigned short _port)
{
 unsigned char rv ;
 __asm__ __volatile__ ("inb %1, %0" : "=a" (rv) : "dN" (_port));
 return rv ;
}

// Writing to IO ports
void outportb (unsigned short _port , unsigned char _data)
{
 __asm__ __volatile__ ("outb %1, %0" : : "dN" (_port), "a" (_data));
}

// The main function loops for eternity. This is to keep our OS alive.
int main ()
{
 for (;;);
 return(0);
}

Listing 4: Our first C file "main.c"

Well, here does not jet happen a lot. From our “start.asm” we call “main” which ends up in an

endless loop. The functions we defined are very basic functions to set memory and read and write to

ports. To make them available in all coming source files we need to define the function headers in a

header file. We create a “system.h” in a subdirectory called “Include”.

#ifndef __SYSTEM_H
#define __SYSTEM_H

/* MAIN.C */
extern void *memcpy(void *dest , const void *src , size_t count);
extern void *memset(void *dest , char val , size_t count);
extern unsigned short *memsetw(unsigned short *dest , unsigned short val ,
size_t count);
extern size_t strlen (const char *str);
extern unsigned char inportb (unsigned short _port);
extern void outportb (unsigned short _port , unsigned char _data);

#endif

Listing 5: Header file "system.h"

Hint: If you are not firm with the language C you will want to know what header files are. Header files

tell the compiler which functions will later on be defined in our source code and what they will look

like. The “#ifndef … #define … #endif” construct makes sure that each header file is only included

once
7
.

In this second step we succeeded in calling a c function in our OS! Many of you will get really exited

now because they think “Hey, now I can do anything a can do under my preferred OS!”. Actually, this

is wrong. As you can see we defined functions like memcpy, a very basic function in C. All other

functions we will have to write on our own now. Even printing on the screen is not possible so far

using the functions we have at the moment. But this will change in the next chapter.

Now we have to extend our compiler script! Add the following line directly after “echo Compiling…”.

gcc -Wall -O -fstrength-reduce -fomit-frame-pointer -finline-functions -
fno-builtin -I./Include -c -o main.o main.c
Listing 6: Add a C / H file to the "build.bat" script

Some of you might recognize gcc as a C compiler. Well, we need it because we are compiling C code

now.

The parameters we use are:

- Wall:

- -o: “gcc” produces object files which are linked by the linker script “ld” after compiling.

- fstrength-reduce:

- fomit-frame-pointer:

- finline-functions:

- fno-builtin:

- I: Tells “gcc” to browse the following directory for header files. We will pass the path to our

“include” directory.

If you start the “build.bat” from folder “Step 2” you will see … nothing again :-) Frustrating, isn’t it?

But after all the compiler tells us (by not complaining) that our code is free of errors and that we are

going in the right direction!

3 Writing on screen

Now it is time to write something that you can show your friends and family! We will finally print

something on the screen now that we have a basic structure.

We want to set us two targets for this chapter. On the one hand print colored characters on the

screen and on the other hand scrolling our text whenever we want to. The VGA video card your

computer should own makes it pretty simple. The only thing we have to do is to put the character

and their color in a special memory area. Then we call a print function and that’s it! The VGA card will

take care of updating the screen with the given properties. Scrolling is a thing we have to take care of

on our own. If you want to you might consider calling it creating a driver what we are doing next.

7
 More on header files and defines can be read here:

The address space I just talked about can be found at 0xB8000 in our physical memory. The buffer

has the data type short with a size of 16 bits. This 16 bit element can be separated 2 times. The first 8

bits contain the character that is written on the screen and the last 8 bits contain the foreground and

the background color.

Value Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 Light Grey

8 Dark grey

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Light brown

15 White

Table 1: Color values for the VGA video card

And now we print our line on the screen like:

Println(„My first text\nis pretty red!“,4,1);

Unfortunately, we do not. The reason is simple. We are moving on a very low level and have not yet

defined any functions to easily print out text. We have to see the screen as a matrix (80x25) of

characters and colors (our 16 bit values) that is provided by the VGA video card. This means we have

to access a matrix that can hold 25 lines with 80 colored characters which is aligned in a linear buffer.

Do you know how to break down a two dimensional environment down to a one dimensional (or

linear)? There exists a simple equation:

index = (y_value * width_of_screen) + x_value;

So when we want to write a character to the destination (3,4) (Third character in the fourth line) we

have to calculate (4*80)+3 which results in 323.

unsigned short *where = (unsigned short *)0xB8000 + 323;
*where = character | (attribute << 8);

Listing 7: Determining a character on screen and changing it

With this knowledge we are able to draw colored text on our screen. In the „scrn.c“ I included the

„system.h“ because we need functions to copy memory, determining the length of strings and

writing to I/O ports (in this case of the VGA card).

The scroll function is easy. It copies the line 1 over the line 0, line 2 over line 1, … and clears the last

line.

#include <system.h>

// Local variables for text pointer, background and foreground color
// and for the cursor coordinates
unsigned short *textmemptr ;
int attrib = 0x0F;
int csr_x = 0, csr_y = 0;

// Function to scroll the screen for one line if ne eded.
void scroll (void)
{
 unsigned blank , temp ;

 // We define a blank line.
 blank = 0x20 | (attrib << 8);

 // If we find ourselves at the last line we need to scoll.
 if(csr_y >= 25)
 {
 // We move the entire text on the screen up one lin e.
 temp = csr_y - 25 + 1;
 memcpy (textmemptr , textmemptr + temp * 80, (25 - temp) * 80 * 2);

 // We set the last line to our blank line.
 memsetw (textmemptr + (25 - temp) * 80, blank , 80);
 csr_y = 25 - 1;
 }
}

// Updates the blinking cursor. This is done by the VGA adapter
// as you can see on the functions "outportb" where we write
// to an external IO Port.
void move_csr (void)
{
 unsigned curpos ;

 // Find the position where the cursor has to be pla ced.
 curpos = csr_y * 80 + csr_x ;

 // Here we write the position to the Control Regist er of
 // the VGA controller.
 outportb (0x3D4, 14);
 outportb (0x3D5, curpos >> 8);
 outportb (0x3D4, 15);
 outportb (0x3D5, curpos);

}

// Clear the screen
void cls ()
{
 unsigned blank ;
 int i ;

 // Like the scrolling function we define a blank li ne.
 blank = 0x20 | (attrib << 8);

 // Now we put this blank line in all 25 lines of ou r screen.
 for(i = 0; i < 25; i ++)
 memsetw (textmemptr + i * 80, blank , 80);

 // Set the cursor to 0/0 and set the blinking curso r there.
 csr_x = 0;
 csr_y = 0;
 move_csr ();
}

// Deletes the last char
void delchar ()
{
 unsigned short *where ;
 unsigned att = attrib << 8;
 char c = ' ' ;

 csr_x --;

 if(csr_x < 0)
 {
 csr_x = 0;
 csr_y --;

 if(csr_y < 0)
 csr_y = 0;
 }

 where = textmemptr + (csr_y * 80 + csr_x);
 *where = c | att ;
 move_csr ();
}

// Print a char on the screen.
void putch (unsigned char c)
{
 unsigned short *where ;
 unsigned att = attrib << 8;

 // Backspace -> Move the cursor back
 if(c == 0x08)
 {
 if(csr_x != 0) csr_x --;
 }
 // Moves the cursor foreward to a point that can be divided by 8
 else if(c == 0x09)
 {
 csr_x = (csr_x + 8) & ~(8 - 1);
 }
 // Carriage Return -> Brings the cursor back to the beginning
 // of the current line

 else if(c == '\r')
 {
 csr_x = 0;
 }
 // New line -> increments the y value and sets the x value to 0.
 else if(c == '\n')
 {
 csr_x = 0;
 csr_y ++;
 }
 // Everything else greater / equal than a space can be printed out.
 // Character and color will be printed out.
 else if(c >= ' ')
 {
 where = textmemptr + (csr_y * 80 + csr_x);
 *where = c | att ;
 csr_x ++;
 }

 // If we have printed out more than 79 characters
 // we add a new line.
 if(csr_x >= 80)
 {
 csr_x = 0;
 csr_y ++;
 }

 // Scroll the screen and move the cursor.
 scroll ();
 move_csr ();
}

// Puts out a string which is now easy using putch
void puts (unsigned char *text)
{
 int i ;

 for (i = 0; i < strlen (text); i ++)
 {
 putch (text [i]);
 }
}

// Sets the foreground and background color
void settextcolor (unsigned char forecolor , unsigned char backcolor)
{
 // First 4 bytes for background, last 4 bytes for f oreground.
 attrib = (backcolor << 4) | (forecolor & 0x0F);
}

// Initialize our video driver
void init_video (void)
{
 // @0xB8000 our video memory begins that holds the information
 // on the content of our screen.
 textmemptr = (unsigned short *)0xB8000 ;
 cls ();
}

Listing 8: Controlling the screen via "scrn.c"

That is a bunch of code! Let me give you a first insight in what the functions do:

1) Void scroll(void): Scrolls the screen by one line.

2) void move_csr(void): Updates the little blinking cursor which is always at the position where

we are currently typing.

3) void cls(): Clears the entire screen.

4) void delchar(): Deletes the last character and resets the cursor.

5) void putch(unsigned char c): Puts one single character on the screen.

6) void puts(unsigned char *text): Puts an entire string on the screen.

7) void settextcolor(unsigned char forecolor, unsigned char backcolor): Sets the foreground

and background color.

8) void init_video(void): Initializes our video functions.

As you might have seen we use functions that we declared in main.c. If you have problems

understanding the purpose of them you can now figure out what they are used for.

Hint: If you want to know more about VGA programming have a look at this page:

http://www.brackeen.com/vga/basics.html

At last, we have to add the prototypes of these functions to our “system.h” file. Add these lines

directly before “#endif”.

/* SCRN.C */
extern void cls ();
extern void putch (unsigned char c);
extern void puts (unsigned char *str);
extern void settextcolor (unsigned char forecolor , unsigned char
backcolor);
extern void init_video ();

Listing 9: Prototypes for the screen functions in "system.h"

Hint: You will see that I add all function prototypes and structs to “system.h”. This is no good

programming style. Normally you would create an own header file for each code file. But I personally

prefer to keep the overview over our written functions and at the end of this tutorial we will have

more than XX code files so that you will get bored searching for a function prototype in all the header

files.

Now, open your „main.c“ and add the following 2 lines at the beginning of the „main“ function.

init_video ();
puts ("Hello World!");

Listing 10: Printing on screen

Now try it. Copy the compiled „kernel.bin“ to the GRUB floppy disk and boot it. This is the first time

you will see something. This is the most complex Hello World you have ever written am I right?

4 Let me interrupt you

After output comes? Right, input! But before we start to ask ourselves how we can use the keyboard

we have to talk about another topic first: Interrupts. What is an interrupt? An interrupt can be

compared to a trigger for the processor. Every time, a routine wants the processors attention it

creates an interrupt, for example when it finishes a command like writing data to a disk, when it has

data to be read and when an input device has data that wants to be processed. Such as our keyboard

later on! But an interrupt can also handle exceptions like, for instance, division by zero.

So we can say interrupts can be used for two purposes:

- Process hardware messages

- Process exceptions

A motherboard contains some chips (The PITS - we will talk about them later) for interrupt handling

which are programmable so that we can define our own interrupts. These definitions are stored in

the so called Interrupt Description Table.

5.1 Interrupt Descriptor Table

The Interrupt Descriptor Table (IDT) is there to tell the CPU what Interrupt Service Routine (ISR) to

use to handle exceptions or hardware interrupts.

As the name says the IDT can be imagined as a table with n 64 bits long entries. It has an entry for an

address where the CPU can find the ISR that is called when the interrupt occurs. Furthermore, it has

a permission flag which tells which permissions are necessary to call this interrupt. There are

permission levels from 0 (highest permission) to 3 (lowest). Commonly, the kernel itself has the

highest permission and applications that are executed on the system have the permission level 3. The

same permission level technique you will find in the Global Descriptor Table when we talk about

memory and task management in chapter XX.

GRAFIK DER 64 bits

The following source code will explain the IDT a lot better.

#include <system.h>

// An entry entry in the IDT table
struct idt_entry
{
 unsigned short base_lo ;
 unsigned short sel ; // The kernel segment
 unsigned char always0 ; // This value is always ... 0!
 unsigned char flags ;
 unsigned short base_hi ;
} __attribute__ ((packed)); // We use the smalest alignment, meaning no
zeros between
// our variables.

struct idt_ptr
{
 unsigned short limit ;

 unsigned int base ;
} __attribute__ ((packed));

// The IDT with 256 entries. We will only use 32 en tries. If any other
// IDT entry is called it will cause an "Unhandled Interrupt" exception.
struct idt_entry idt [256];
struct idt_ptr idtp ;

// This extern function is defined in start.asm. It initializes a new
// IDT (idtp). This can once again only be done in assembler.
extern void idt_load ();

// Set an entry in the IDT.
void idt_set_gate (unsigned char num, unsigned long base , unsigned short
sel , unsigned char flags)
{
 // IR's base address
 idt [num].base_lo = (base & 0xFFFF);
 idt [num].base_hi = (base >> 16) & 0xFFFF;

 // Other properties are set here
 idt [num].sel = sel ;
 idt [num].always0 = 0;
 idt [num].flags = flags ;
}

// Initialize the IDT
void idt_install ()
{
 // Sets the max address of the IDT
 idtp .limit = (sizeof (struct idt_entry) * 256) - 1;
 // Sets the start address of the IDT
 idtp .base = &idt ;

 // Set the entire IDT to zero
 memset (&idt , 0, sizeof(struct idt_entry) * 256);

 // Here you can add new ISRs to the IDT via idt_set _gate

 // Tells the Processor where the new IDT can be fou nd
 idt_load ();
}

Listing 11: The Interrupt Descriptor Table

So what do we do here? We create 2 structs, idt_entry and idt_ptr. The first holds an entry in the IDT

to define an ISR with its start and end point in memory so that it can be called. The idt_ptr struct

holds the information on the start and end in memory of the new IDT. Using the function idt_install

we can now set the IDT memory to the place where an array of 256 idt_entries can be found.

Hint: The packed directive tells the compiler to avoid zeros between the fields of the struct

“idt_entry”. This can be useful if to save memory and to keep a certain structure in your code so that

an instance of the struct can be read by other procedures which expect exactly this structure. This is

what our CPU does. It expects the “idt_entry” to have an exact structure (short, short, char, char,

short) so that it can be processes by the CPUs routines.

We initialize this memory with zero and tell via an external function (idt_load) in our start.asm where

the processor can find our new IDT which is our idt struct. Add the following code after the line “;

Place holder for interrupt code.”.

; Loads the IDT from idt.c as new IDT
global _idt_load
extern _idtp
_idt_load :
 lidt [_idtp]
 ret

Listing 12: Loading the new IDT in start.asm

Using the remaining function idt_set_gate we can define new ISRs. Be aware that we have no

checking for valid values here! Let’s expect our OS to work properly :-)

Last but not least add these three lines to system.h.

/* IDT.C */
extern void idt_set_gate (unsigned char num, unsigned long base , unsigned
short sel , unsigned char flags);
extern void idt_install ();

Listing 13: Making our IDT functions public in system.h

4.2 Interrupts to handle exceptions

Can you remember that interrupts handle exceptions as well? As next step we will define the most

important exceptions for our OS. An exception could be “Division by 0” or “Debug exception” and is

defined as case that is encountered when the processor cannot continue the normal code execution.

We will add 32 exceptions to our IDT:

Exception number Description Error Code?

0 Division By Zero Exception No

1 Debug Exception No

2 Non Maskable Interrupt

Exception

No

3 Breakpoint Exception No

4 Into Detected Overflow

Exception

No

5 Out Of Bounds Exception No

6 Invalid Opcode Exception No

7 No Coprocessor Exception No

8 Double Fault Expcetion Yes

9 Coprocessor Segment Overrun Yes

Exception

10 Bad TSS Exception Yes

11 Segment Not Present Exception Yes

12 Stack Fault Exception Yes

13 General Protection Fault

Exception

Yes

14 Page Fault Exception Yes

15 Unknown Interrupt Exception No

16 Coprocessor Fault Exception No

17 Alignment Check Exception

(486+)

No

18 Machine Check Exception (586+

/ Pentium)

No

19 – 31 Reserved Exceptions No

Table 2: Exceptions in the IDT

Some exceptions give back an error code, meaning an error code is pushed on the stack. In our later

code we will make it easier by pushing the error code 0 on the stack for all exceptions which do not

give back an error code. To know which ISR has been called we will push the ID of the exception on

the stack as well. If we are in an IRS we first deactivate interrupts using the assembler code “cli”. This

avoids two interrupt routines to be called at the same time. In the following code we will define our

interrupt routines which consist of quite a lot of code. Since we are working a lot with the stack and

registers we will use assembler code again.

; The interrupt service routines definitions
global _isr0
global _isr1
global _isr2
global _isr3
global _isr4
global _isr5
global _isr6
global _isr7
global _isr8
global _isr9
global _isr10
global _isr11
global _isr12
global _isr13
global _isr14
global _isr15
global _isr16
global _isr17
global _isr18
global _isr19

global _isr20
global _isr21
global _isr22
global _isr23
global _isr24
global _isr25
global _isr26
global _isr27
global _isr28
global _isr29
global _isr30
global _isr31

; 0: Divide By Zero Exception
_isr0 :
 cli
 push byte 0
 push byte 0
 jmp isr_common_stub

; 1: Debug Exception
_isr1 :
 cli
 push byte 0
 push byte 1
 jmp isr_common_stub

; 2: Non Maskable Interrupt Exception
_isr2 :
 cli
 push byte 0
 push byte 2
 jmp isr_common_stub

; 3: Int 3 Exception
_isr3 :
 cli
 push byte 0
 push byte 3
 jmp isr_common_stub

; 4: INTO Exception
_isr4 :
 cli
 push byte 0
 push byte 4
 jmp isr_common_stub

; 5: Out of Bounds Exception
_isr5 :
 cli
 push byte 0
 push byte 5
 jmp isr_common_stub

; 6: Invalid Opcode Exception
_isr6 :
 cli
 push byte 0
 push byte 6
 jmp isr_common_stub

; 7: Coprocessor Not Available Exception
_isr7 :
 cli
 push byte 0
 push byte 7
 jmp isr_common_stub

; 8: Double Fault Exception (With Error Code!)
_isr8 :
 cli
 push byte 8
 jmp isr_common_stub

; 9: Coprocessor Segment Overrun Exception
_isr9 :
 cli
 push byte 0
 push byte 9
 jmp isr_common_stub

; 10: Bad TSS Exception (With Error Code!)
_isr10 :
 cli
 push byte 10
 jmp isr_common_stub

; 11: Segment Not Present Exception (With Error Cod e!)
_isr11 :
 cli
 push byte 11
 jmp isr_common_stub

; 12: Stack Fault Exception (With Error Code!)
_isr12 :
 cli
 push byte 12
 jmp isr_common_stub

; 13: General Protection Fault Exception (With Erro r Code!)
_isr13 :
 cli
 push byte 13
 jmp isr_common_stub

; 14: Page Fault Exception (With Error Code!)
_isr14 :
 cli
 push byte 14
 jmp isr_common_stub

; 15: Reserved Exception
_isr15 :
 cli
 push byte 0
 push byte 15
 jmp isr_common_stub

; 16: Floating Point Exception
_isr16 :
 cli
 push byte 0
 push byte 16

 jmp isr_common_stub

; 17: Alignment Check Exception
_isr17 :
 cli
 push byte 0
 push byte 17
 jmp isr_common_stub

; 18: Machine Check Exception
_isr18 :
 cli
 push byte 0
 push byte 18
 jmp isr_common_stub

; 19: Reserved
_isr19 :
 cli
 push byte 0
 push byte 19
 jmp isr_common_stub

; 20: Reserved
_isr20 :
 cli
 push byte 0
 push byte 20
 jmp isr_common_stub

; 21: Reserved
_isr21 :
 cli
 push byte 0
 push byte 21
 jmp isr_common_stub

; 22: Reserved
_isr22 :
 cli
 push byte 0
 push byte 22
 jmp isr_common_stub

; 23: Reserved
_isr23 :
 cli
 push byte 0
 push byte 23
 jmp isr_common_stub

; 24: Reserved
_isr24 :
 cli
 push byte 0
 push byte 24
 jmp isr_common_stub

; 25: Reserved
_isr25 :
 cli
 push byte 0

 push byte 25
 jmp isr_common_stub

; 26: Reserved
_isr26 :
 cli
 push byte 0
 push byte 26
 jmp isr_common_stub

; 27: Reserved
_isr27 :
 cli
 push byte 0
 push byte 27
 jmp isr_common_stub

; 28: Reserved
_isr28 :
 cli
 push byte 0
 push byte 28
 jmp isr_common_stub

; 29: Reserved
_isr29 :
 cli
 push byte 0
 push byte 29
 jmp isr_common_stub

; 30: Reserved
_isr30 :
 cli
 push byte 0
 push byte 30
 jmp isr_common_stub

; 31: Reserved
_isr31 :
 cli
 push byte 0
 push byte 31
 jmp isr_common_stub

; In isr_common_stub we will use a C function calle d "fault_handler"
extern _fault_handler

; Here we save the processor state, calls the C fau lt handler
; and restores the stack frame in the end.
isr_common_stub :
 pusha
 push ds
 push es
 push fs
 push gs
 mov ax, 0x10
 mov ds, ax
 mov es, ax
 mov fs, ax
 mov gs, ax

 mov eax, esp
 push eax
 mov eax, _fault_handler
 call eax
 pop eax
 pop gs
 pop fs
 pop es
 pop ds
 popa
 add esp, 8
 iret

Listing 14: Add these lines below the "_idt_load" part in start.asm

The comments in the code are self explanatory for the functionality. We basically offer interrupt

routines to be called. If they are called we push the error code on the stack, save the processor state,

handle the fault and restore the state on the stack.

Hint: When you ever plan to write a boot loader for your OS do not forget to turn off your interrupts

when it comes to creating a stack. You can use the assembler function “cli” to disable interrupts. “sti”

enables them again.

Now we have to register our ISRs to the IDT and print out an exception when the fault handler is

called. By changing the text color to red we let the thing look a little bit fancier. Therefore, we create

a new file called “isrs.c”.

#include <system.h>

// The exception handlers in start.asm
extern void isr0 ();
extern void isr1 ();
extern void isr2 ();
extern void isr3 ();
extern void isr4 ();
extern void isr5 ();
extern void isr6 ();
extern void isr7 ();
extern void isr8 ();
extern void isr9 ();
extern void isr10 ();
extern void isr11 ();
extern void isr12 ();
extern void isr13 ();
extern void isr14 ();
extern void isr15 ();
extern void isr16 ();
extern void isr17 ();
extern void isr18 ();
extern void isr19 ();
extern void isr20 ();
extern void isr21 ();
extern void isr22 ();
extern void isr23 ();
extern void isr24 ();
extern void isr25 ();
extern void isr26 ();
extern void isr27 ();
extern void isr28 ();

extern void isr29 ();
extern void isr30 ();
extern void isr31 ();

// Here we register the first 32 ISRs in our IDT. T he access flag is
// set to 0x8E which means the entry is present and running in ring 0
(kernel mode)
// and has the lower bytes set to the required '14' .
void isrs_install ()
{
 idt_set_gate (0, (unsigned)isr0 , 0x08 , 0x8E);
 idt_set_gate (1, (unsigned)isr1 , 0x08 , 0x8E);
 idt_set_gate (2, (unsigned)isr2 , 0x08 , 0x8E);
 idt_set_gate (3, (unsigned)isr3 , 0x08 , 0x8E);
 idt_set_gate (4, (unsigned)isr4 , 0x08 , 0x8E);
 idt_set_gate (5, (unsigned)isr5 , 0x08 , 0x8E);
 idt_set_gate (6, (unsigned)isr6 , 0x08 , 0x8E);
 idt_set_gate (7, (unsigned)isr7 , 0x08 , 0x8E);

 idt_set_gate (8, (unsigned)isr8 , 0x08 , 0x8E);
 idt_set_gate (9, (unsigned)isr9 , 0x08 , 0x8E);
 idt_set_gate (10, (unsigned)isr10 , 0x08 , 0x8E);
 idt_set_gate (11, (unsigned)isr11 , 0x08 , 0x8E);
 idt_set_gate (12, (unsigned)isr12 , 0x08 , 0x8E);
 idt_set_gate (13, (unsigned)isr13 , 0x08 , 0x8E);
 idt_set_gate (14, (unsigned)isr14 , 0x08 , 0x8E);
 idt_set_gate (15, (unsigned)isr15 , 0x08 , 0x8E);

 idt_set_gate (16, (unsigned)isr16 , 0x08 , 0x8E);
 idt_set_gate (17, (unsigned)isr17 , 0x08 , 0x8E);
 idt_set_gate (18, (unsigned)isr18 , 0x08 , 0x8E);
 idt_set_gate (19, (unsigned)isr19 , 0x08 , 0x8E);
 idt_set_gate (20, (unsigned)isr20 , 0x08 , 0x8E);
 idt_set_gate (21, (unsigned)isr21 , 0x08 , 0x8E);
 idt_set_gate (22, (unsigned)isr22 , 0x08 , 0x8E);
 idt_set_gate (23, (unsigned)isr23 , 0x08 , 0x8E);

 idt_set_gate (24, (unsigned)isr24 , 0x08 , 0x8E);
 idt_set_gate (25, (unsigned)isr25 , 0x08 , 0x8E);
 idt_set_gate (26, (unsigned)isr26 , 0x08 , 0x8E);
 idt_set_gate (27, (unsigned)isr27 , 0x08 , 0x8E);
 idt_set_gate (28, (unsigned)isr28 , 0x08 , 0x8E);
 idt_set_gate (29, (unsigned)isr29 , 0x08 , 0x8E);
 idt_set_gate (30, (unsigned)isr30 , 0x08 , 0x8E);
 idt_set_gate (31, (unsigned)isr31 , 0x08 , 0x8E);
}

// This string array contains the message correspon ding
// to the exceptions.
unsigned char *exception_messages [] =
{
 "Division By Zero" ,
 "Debug" ,
 "Non Maskable Interrupt" ,
 "Breakpoint" ,
 "Into Detected Overflow" ,
 "Out of Bounds" ,
 "Invalid Opcode" ,
 "No Coprocessor" ,

 "Double Fault" ,
 "Coprocessor Segment Overrun" ,

 "Bad TSS" ,
 "Segment Not Present" ,
 "Stack Fault" ,
 "General Protection Fault" ,
 "Page Fault" ,
 "Unknown Interrupt" ,

 "Coprocessor Fault" ,
 "Alignment Check" ,
 "Machine Check" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,

 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved" ,
 "Reserved"
};

// This fault handler is used in every ISR. The par ameter tells which
exception
// happened. If the interrupt is valid (id < 32) we print the exception
message
// and halt the system by an endless loop.
void fault_handler (struct regs *r)
{
 if (r ->int_no < 32)
 {
 settextcolor (4,0);
 puts (exception_messages [r ->int_no]);
 puts (" Exception. System Halted!\n");
 for (;;);
 settextcolor (15,0);
 }
}

Listing 15: Create "isrs.c" to register the ISRs and to put out fault messages

In the “fault_handler” procedure we use a struct “regs” which represents a stack frame and lets us

take a snapshot to handle multiple interrupts. Add this struct to “system.h”. Furthermore, add the

prototype of “isrs_install”.

// Here we can save our stack
struct regs
{
 unsigned int gs , fs , es , ds ;
 unsigned int edi , esi , ebp , esp , ebx , edx , ecx , eax ;
 unsigned int int_no , err_code ;
 unsigned int eip , cs , eflags , useresp , ss ;
};

/* ISRS.C */
extern void isrs_install ();

Listing 16: The regs struct to take a stack snapshot and the ISR prototype

Now we can call “idt_install();” and “isrs_install();” in our main.c. And here it gets interesting! Add

the line “putch(10 / 0);” before the endless loop in the main routine. If you did everything right you

will see a red line with the error code we defined for the exception “Division by zero”.

4.3 Interrupt Requests to handle hardware messages

Interrupt Requests are interrupts that are issued by hardware. Whenever a CPU receives an interrupt

request (IRQ) it pauses whatever it is doing and executes the necessary action like reading from the

keyboard. Afterwards it writes the hex value 0x20 to a command register of the Programmable

Interrupt Controller (PIC) to tell that he has finished its action. So what is a PIC? A PIC is a chip on the

motherboard to manage IRQs. Each motherboard has two of them and each PIC can handle 8 IRQs.

The second PIC can also be told that the CPU finished a command by writing the value 0xA0 to the

command register.

So what is the advantage of a Programmable Interrupt Controller? Easy! Normally, IRQ0 – IRQ7 are

mapped to the IDT entry 8 to 15 and IRQ8 – IRQ15 are mapped to IDT entry 112 – 120. As you can

remember we reserved IDT entry 0-31 for exceptions! So we will remap IRQ0-IRQ15 to the IDT

entries 32 – 47. Again, we will extend our start.asm. Add the following lines after the block

“isr_common_stub” (after the line “iret”).

; Handling Hardware Interrupt Requests
global _irq0
global _irq1
global _irq2
global _irq3
global _irq4
global _irq5
global _irq6
global _irq7
global _irq8
global _irq9
global _irq10
global _irq11
global _irq12
global _irq13
global _irq14
global _irq15

; 32: IRQ0
_irq0 :
 cli
 push byte 0
 push byte 32
 jmp irq_common_stub

; 33: IRQ1
_irq1 :
 cli
 push byte 0
 push byte 33
 jmp irq_common_stub

; 34: IRQ2
_irq2 :
 cli

 push byte 0
 push byte 34
 jmp irq_common_stub

; 35: IRQ3
_irq3 :
 cli
 push byte 0
 push byte 35
 jmp irq_common_stub

; 36: IRQ4
_irq4 :
 cli
 push byte 0
 push byte 36
 jmp irq_common_stub

; 37: IRQ5
_irq5 :
 cli
 push byte 0
 push byte 37
 jmp irq_common_stub

; 38: IRQ6
_irq6 :
 cli
 push byte 0
 push byte 38
 jmp irq_common_stub

; 39: IRQ7
_irq7 :
 cli
 push byte 0
 push byte 39
 jmp irq_common_stub

; 40: IRQ8
_irq8 :
 cli
 push byte 0
 push byte 40
 jmp irq_common_stub

; 41: IRQ9
_irq9 :
 cli
 push byte 0
 push byte 41
 jmp irq_common_stub

; 42: IRQ10
_irq10 :
 cli
 push byte 0
 push byte 42
 jmp irq_common_stub

; 43: IRQ11
_irq11 :

 cli
 push byte 0
 push byte 43
 jmp irq_common_stub

; 44: IRQ12
_irq12 :
 cli
 push byte 0
 push byte 44
 jmp irq_common_stub

; 45: IRQ13
_irq13 :
 cli
 push byte 0
 push byte 45
 jmp irq_common_stub

; 46: IRQ14
_irq14 :
 cli
 push byte 0
 push byte 46
 jmp irq_common_stub

; 47: IRQ15
_irq15 :
 cli
 push byte 0
 push byte 47
 jmp irq_common_stub

extern _irq_handler

irq_common_stub :
 pusha
 push ds
 push es
 push fs
 push gs

 mov ax, 0x10
 mov ds, ax
 mov es, ax
 mov fs, ax
 mov gs, ax
 mov eax, esp

 push eax
 mov eax, _irq_handler
 call eax
 pop eax

 pop gs
 pop fs
 pop es
 pop ds
 popa
 add esp, 8
 iret

Listing 17: Remapping the Interrupt Service Requests

 Once again, we react on interrupts. When, for example, the Interrupt Request 15 occurs interrupts

will be forbidden, we push a dummy error code 0 on the stack followed by the index of the interrupt

to match it to the entry in the Interrupt Descriptor Table afterwards. Then we save our registers to

the stack, handle the Interrupt Request and restore our registers from the stack again.

As you might guess the C part follows now. Create a new file and call it “irq.c”.

#include <system.h>

// We define these Interrupt Service Requests on ou r own
// to point to a special IRQ handler instead of the regular
// fault_handler.
extern void irq0 ();
extern void irq1 ();
extern void irq2 ();
extern void irq3 ();
extern void irq4 ();
extern void irq5 ();
extern void irq6 ();
extern void irq7 ();
extern void irq8 ();
extern void irq9 ();
extern void irq10 ();
extern void irq11 ();
extern void irq12 ();
extern void irq13 ();
extern void irq14 ();
extern void irq15 ();

// Pointer array to handle custom ORQ handlers of a special IRQ
void *irq_routines [16] =
{
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0
};

// With this function we can define a custom IRQ ha ndler
// for an IRQ. So we manage the target functions th at are called
// when an interrupt occurs on our own.
void irq_install_handler (int irq , void (*handler)(struct regs *r))
{
 irq_routines [irq] = handler ;
}

// By setting the pointer of an interrupt routine t o 0
// we will unload the handler.
void irq_uninstall_handler (int irq)
{
 irq_routines [irq] = 0;
}

// Here we remap our IRQs (0-15 to 32-47) as explai ned in the
// tutorial.
void irq_remap (void)
{
 outportb (0x20 , 0x11);
 outportb (0xA0, 0x11);
 outportb (0x21 , 0x20);
 outportb (0xA1, 0x28);

 outportb (0x21 , 0x04);
 outportb (0xA1, 0x02);
 outportb (0x21 , 0x01);
 outportb (0xA1, 0x01);
 outportb (0x21 , 0x0);
 outportb (0xA1, 0x0);
}

// Identical to defining the exception handlers we will
// install the appropriate Interrupt Service Routin es to the
// corresponding entries in the IDT.
void irq_install ()
{
 irq_remap ();

 idt_set_gate (32, (unsigned)irq0 , 0x08 , 0x8E);
 idt_set_gate (33, (unsigned)irq1 , 0x08 , 0x8E);
 idt_set_gate (34, (unsigned)irq2 , 0x08 , 0x8E);
 idt_set_gate (35, (unsigned)irq3 , 0x08 , 0x8E);
 idt_set_gate (36, (unsigned)irq4 , 0x08 , 0x8E);
 idt_set_gate (37, (unsigned)irq5 , 0x08 , 0x8E);
 idt_set_gate (38, (unsigned)irq6 , 0x08 , 0x8E);
 idt_set_gate (39, (unsigned)irq7 , 0x08 , 0x8E);

 idt_set_gate (40, (unsigned)irq8 , 0x08 , 0x8E);
 idt_set_gate (41, (unsigned)irq9 , 0x08 , 0x8E);
 idt_set_gate (42, (unsigned)irq10 , 0x08 , 0x8E);
 idt_set_gate (43, (unsigned)irq11 , 0x08 , 0x8E);
 idt_set_gate (44, (unsigned)irq12 , 0x08 , 0x8E);
 idt_set_gate (45, (unsigned)irq13 , 0x08 , 0x8E);
 idt_set_gate (46, (unsigned)irq14 , 0x08 , 0x8E);
 idt_set_gate (47, (unsigned)irq15 , 0x08 , 0x8E);
}

// Each service routine of an Interrupt Request poi nts to this
// function. After handling the ISR we need to tell the interrupt
// controllers that we are done handling the interr upt. As said
// in the tutorial this happens by putting the hex value 0x20 to
// the adress 0x20 for the first controller and for the second
// controller we write 0x20 to 0xA0.
// If the second controller (IRQ from 8 to 15) rece ives and interrupt
// we need to tell the first controller, too, that we have finished
// the interrupt routine.
void irq_handler (struct regs *r)
{
 // Blank function pointer
 void (*handler)(struct regs *r);

 // If we have a routine defined for this interrupt call it!
 handler = irq_routines [r ->int_no - 32];
 if (handler)
 {
 handler (r);
 }

 // Here we are already done with the handling of ou r interrupt!

 // If the entry in the IDT that we called had an in dex >= 40
 // we will have to send an "End of Interrupt" (0x20) to the
 // second controller.
 if (r ->int_no >= 40)
 {

 outportb (0xA0, 0x20);
 }

 // In both cases we need to tell the first controll er that
 // we are done handling our Interrupt Routine.
 outportb (0x20 , 0x20);
}

Listing 18: "irq.c" to handle our (non exception) hardware interrupts

The source code is easy to understand and very similar to listing XX so I will not comment on it. Now

we are almost done! The next step will be to add the function prototypes to “system.h”.

/* IRQ.C */
extern void irq_install_handler (int irq , void (*handler)(struct regs *r));
extern void irq_uninstall_handler (int irq);
extern void irq_install ();

Listing 19: Function prototypes for the Interrupt Requests

So, it is time to use the code we have written in the last hour. Let us add the necessary initialization

to our “main.c”. Add these two lines right before “for(;;);”. The first function initializes our Interrupt

Requests and the last line is an assembler call to allow interrupts from now on!

 irq_install ();
 __asm__ __volatile__ ("sti");

Listing 20: Initialize Interrupt Requests and allow interrupts from now on

Wow, this was a bunch of difficult code! What we finally did is we wrote procedures to let our kernel

handle exceptions that occur and furthermore we are now able to react on hardware inputs! Well,

not yet because we have to install our handler for the keyboard. So let us do this now!

5 Our first input device – the keyboard

Motivational Speech: We will slow down a little bit from now on. The last chapters were really

difficult and now that you managed you get here proves 3 things. You are smart. You have what is

called in today’s business environment “drive to achieve”. And you have passed a line that most

hobby OS developers did not pass this is why you can call yourself an advanced beginner from now

on :-)

Do you remember that we wrote a simple driver for the VGA controller? We will now do the same for

the keyboard which is mostly converting scan codes to ASCII (Abkürzung) characters that we can

understand.

Hint: Why use scan codes? As you know English keyboards look different to German ones. So when

we press the “z” key on an English keyboard it will write a “y” in an OS that is set to German

language. When we set the OS to English language it will print the character “z”. Even if we use the

same key! This is possible because the OS maps the scan code of every key (which is an integer) to a

character.

We will use a lookup table to map the scan codes to ASCII which is a simple array. Before we define

this array we will have to learn about a special case. If the top bit of the byte we will receive from the

keyboard via our interrupt is set this means that the key has been released. You can check this easily

with “scancode & 0x80”.

Create a “kb.c” and add the following code:

#include <system.h>

// KBDUS stands for US keyboard layout.
// Create a layout in a different language if you w ant
// or confuse your friends with a weired mapping :-)
unsigned char kbdus [128] =
{
 0, 27, '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , /* 9 */
 '9' , '0' , '-' , '=' , '\b' , /* Backspace */
 '\t' , /* Tab */
 'q' , 'w' , 'e' , 'r' , /* 19 */
 't' , 'y' , 'u' , 'i' , 'o' , 'p' , '[' , ']' , '\n' , /* Enter key */
 0, /* 29 - Control */
 'a' , 's' , 'd' , 'f' , 'g' , 'h' , 'j' , 'k' , 'l' , ';' , /* 39 */
 '\'' , '`' , 0, /* Left shift */
 '\\' , 'z' , 'x' , 'c' , 'v' , 'b' , 'n' , /* 49 */
 'm' , ',' , '.' , '/' , 0, /* Right shift */
 '*' ,
 0, /* Alt */
 ' ' , /* Space bar */
 0, /* Caps lock */
 0, /* 59 - F1 key ... > */
 0, 0, 0, 0, 0, 0, 0, 0,
 0, /* < ... F10 */
 0, /* 69 - Num lock*/
 0, /* Scroll Lock */
 0, /* Home key */
 0, /* Up Arrow */
 0, /* Page Up */
 '-' ,
 0, /* Left Arrow */
 0,
 0, /* Right Arrow */
 '+' ,
 0, /* 79 - End key*/
 0, /* Down Arrow */
 0, /* Page Down */
 0, /* Insert Key */
 0, /* Delete Key */
 0, 0, 0,
 0, /* F11 Key */
 0, /* F12 Key */
 0, /* All other keys are undefined */
};

// Handler for keyboard interrupts
// We can register this one with "irq_install_handl er".
void keyboard_handler (struct regs *r)
{
 unsigned char scancode ;

 // Read from the keyboards data buffer
 scancode = inportb (0x60);

 // Check if the key has been released
 if (scancode & 0x80)
 {

 // Use this branch to check if shift, alt, control, ... has
been released
 }
 else
 {
 // Here a key is pressed. When you keep holding the key
 // down you will receive interrupts repeatedly.

 // Here we will output each char that we receive.
 putch (kbdus [scancode]);
 }
}

// Install the keyboard interrupt request handler
void keyboard_install ()
{
 irq_install_handler (1, keyboard_handler);
}

Listing 21: IRQ to handle keyboard input

The motherboard has an own microcontroller for the keyboard. This controller has two channels, one

for the mouse and one for the keyboard. Additionally, it has two registers: A data register (0x60) and

a control register (0x64). Anything the keyboard sends to the computer is stored in the data register.

You might recognize that some values in the layout map are left at 0. We will make up our own

values for these keys. Furthermore, it will be necessary to add a routine to save the state of some

keys like capslock, numlock, scrolllock, alt, control, … to allow uppercase letters!

EXTEND KB.C

Add the function prototype for the keyboard_installation to the “system.h”.

/* KEYBOARD.C */
extern void keyboard_install ();

And call this function in the “main.c” right before the line “__asm__ __volatile__ ("sti");”. Compile

your code and see that you can write on the screen. Check the automatic scrolling that we

implemented in the output part!

6 The Programmable Interval Timer

You might have heard of it as system clock. It provides three different channels. Channel 0 is bound

to IRQ0, channel 1 is for system use and should never been accessed, channel 2 is for the system

speaker.

We will use channel 0 to schedule the CPU times to new processes later on as well as to make the

current process sleep for a certain time. By default the tick rate is set to generate 18222 interrupts

per second. The reason for this is that if a tick occurs all 0.055 seconds and if we use a 16 bit timer

tick counter the counter will overflow after exactly one hour and will automatically set back to 0.

Once again we use the outportb function to set the timer interval for firing IRQ0. Each of the three

channels I mentioned has 3 data registers 0x40, 0x41 and 0x42 as well as a command register on

0x43. The timer of the PIT is able to change the frequency it is firing and it gets even better, we can

set a timer for each of our three channels. But why do we only have one command register? The

answer is we use a divisor register. In such a register the command we enter is split up in binary code

and can be separated in several properties.

- CNTR – Counter of the channel (0-2)

- RW – Read Write Mode (1 = Least Significant Byte, 2 = Most Significant Byte, 3 = LSB then

MSB)

- Mode – 0 = Interrupt on terminal count, 1 = Hardware retriggerable one shot, 2 = Rate

generator, 3 = Square Wave Mode, 4 = Software strobe, 5 = Hardware strobe

- Binary Coded Decimal (BCD) – 0 = 16 bit counter, 1 = 4x BCD decade counter

So what does this all mean? We write a 16 bit value into the command register which is separated

into CNTR, RW, Mode and BCD. The CNTR value should be clear; it defines the channel we want to

change (Interrupt Timer for IRQ0, System and Speaker). The RW property tells if we want to write

the first 8 bit of the 16 bits, the last 8 bits or both. Since we write the entire 16 bits of the data we

want to write to the data register we pick both (our frequency will be an integer). I do not want to

talk about each mode in detail because this will take some time. You can read about them here
8
.

Basically they are all modes of running the counter. They define only different ways to start the

counting or the way of counting.

Anyway, we will use mode 3, the square wave generator. Last but not least we have to define if we

want to use a binary coded decimal. As you can guess we will not! We will transfer our 16 bit

counter.

Now we have to write a hex value to the command register 0x43. How do we build this command

up? Easy, we pick the counter (0), the RW mode (3), the mode (3) and the BCD (0) and form this to a

binary value which is: 00 11 011 0. Now use a calculator to transform this binary value to a

hexadecimal value and we will receive: 36.

The timer will divide it’s input clock of 1193180Hz by the number of we put into the data register to

figure out many times per second it should fire the signal for the channel.

So we are ready to write some code again! Create a new file “timer.c” and add the following lines.

#include <system.h>

// For how many ticks has our system been running?
int timer_ticks = 0;

// Set the timer frequency
void timer_phase (int hz)
{
 int divisor = 1193180 / hz ;
 outportb (0x43 , 0x36); // Write the command we assembled
 // in the tutorial to the command

8
 http://en.wikipedia.org/wiki/Intel_8253

register
 outportb (0x40 , divisor & 0xFF); // Set the high byte of the frequency
 outportb (0x40 , divisor >> 8); // Set the low byte of the frequency
}

// This one handles the interrupt for the timer. We increment
// the timer_ticks everytime the interrupt is fired . By
// default the timer ticks 18222 times per second.
void timer_handler (struct regs *r)
{
 timer_ticks ++;

 // Every 18 ticks (~1 second) we can execute an act ion here.
 if (timer_ticks % 18 == 0)
 {
 puts ("One second has passed\n");
 }
}

int nDummy = 0;
void dummy() {
 nDummy = nDummy + 1;
}

// This is a wait function which loops until a spec ial
// time was waited for.
void timer_wait (int ticks)
{
 unsigned long eticks ;

 eticks = timer_ticks + ticks ;
 while(timer_ticks < eticks)
 {
 dummy ();
 }
}

// We set up the system clock for IRQ0 to register to our
// timer.
void timer_install ()
{
 irq_install_handler (0, timer_handler);
}

Listing 22: "Timer.c" to enable our system clock

You will wonder aobut the function “dummy”. This is a tricky problem I was not able to solve yet.

Generally, it should be sufficient to use the line “while(timer_ticks < eticks);” in our “timer_wait”

function but it seems that this loop only ends when there is a command between the brackets that

actually does something. An empty dummy function is no solution. Of course, this is not very pretty

but it works.

Add the following lines to the “system.h”.

/* TIMER.C */
extern void timer_wait (int ticks);
extern void timer_install ();

Finally, add “timer_install();” to your main method in “main.c” and see what happens!

7 Sounds

Now that you read the chapter on the PIT, you will know why I talk about sounds now. You will

remember that its channel 2 is designed to control the speaker. And now that we know about the

command register of the PIT it is pretty simple to implement some easy functions to control the

speaker.

Hint: Why do we still need the speaker? We can use the audio signals to tell the user of our OS about

the current state of his machine. An example would be an exception that is fired through an

interrupt. On the one hand we use red letters but on the other hand we can strengthen this warning

by a deep tone. You will have the chance to try this later and see: it works :-)

Create a new file called “speaker.c” and add the following lines:

#include <system.h>

// Play sound using built in speaker
void play_sound (u32int nFrequence) {
 u32int Div ;
 u8int tmp ;

 //Set the PIT to the desired frequency
 Div = 1193180 / nFrequence ;
 outportb (0x43 , 0xb6);
 outportb (0x42 , (u8int) (Div));
 outportb (0x42 , (u8int) (Div >> 8));

 //And play the sound using the PC speaker
 tmp = inportb (0x61);
 if (tmp != (tmp | 3)) {
 outportb (0x61 , tmp | 3);
 }
}

 //make it shutup
void nosound () {
 u8int tmp = (inportb (0x61) & 0xFC);
 outportb (0x61 , tmp);
}

 //Make a beep
void beep () {
 play_sound (1000);
 timer_wait (5);
 nosound ();
}

Listing 23: "speaker.c" to control the speaker

The function “play sound” uses the command register to tell the PIT that we want to change the

settings of the second channel, namely the speaker. Feel free to calculate “0xb6” to a decimal digit

and try to understand the properties we talked about in chapter 6. Afterwards, we write our

frequency to the data register of the pit. LAST PART.

“nosound” instead stops playing the sound. XX

The function “beep” uses one of our timer functions and beeps for exactly 5 ticks which is pretty

short but sufficient to get the attention of the user.

Now we add these three lines to the “system.h” to make our functions available in the other parts of

our OS:

/* SOUND.C */
extern void play_sound (u32int nFrequence);
extern void nosound ();
extern void beep ();

Listing 24: Extern declarations for the speaker

Try using “beep();” in the main function (after allowing interrupts: “__asm__ __volatile__ ("sti");”). If

you like you can add a beep in the “fault_handler” function in “isrs.c”. Another idea to use the sound

function is to write a row of beeps and waits with different frequencies. Here is a link that shows the

frequencies to the corresponding tunes so that you can use your favorite song as starting melody for

your OS. But keep in mind that a speaker tune could really be annoying :-)

Now we have written something to show your friends. Time for some serious theory again!

Hint: What are these strange types like “u32int”? I created some type definitions in “system.h” which

help to avoid typing a lot as well as it helps to determine if a type is signed or not. Signed means that

negative values are allowed. Unsigned only allows values >=0.

8 Administrating memory with the Global Descriptor Table

With the GDT (Global Descriptor Table) we answer another question from the beginning of this

tutorial. How do we manage the memory and avoid access to occupied disk space? Well, the GDT is

actually only a part of the memory management system but it is able to define which memory areas

(segments
9
) are executable or data! The real memory management (which block is occupied and

which one is free is told via the paging functions that we will take care about later on). Furthermore,

the GDT can tell the kernel about so called segment violations that a process tries to access invalid

memory. The kernel is then supposed to kill this process.

But the GDT is able to hold other information than segment descriptors and includes other OS parts

as well. Namely the Task State Segment (TSS), the Local Descriptor Table (LDT) and the Call Gate.

8.1 Task State Segment

The TSS contains information on tasks running on the system:

- Processor register states – Very helpful if we have to switch between different tasks (multi

tasking) to save and restore process states.

- I/O Port permissions – A bit array keeps track on all permissions a task has. When a task

wants to access an IO port, for instance our VGA card as seen in chapter XX to set the

blinking cursor, the permission is requested. It the value in the bit array corresponding to the

VGA controller is 0 the access is granted. If it is 1, the access is denied.

9
 Since the GDT is a structure used by Intel processors, Intel also defined the term „segment“ as memory area.

- Inner level stack pointers – The TSS contains 6 fields to store a new stack pointer when we

change the privilege level. As privilege level you could imagine to execute a program as

admin and then change the privilege level to user. Of course, a user has not as much rights as

an administrator. With these inner level stack pointers we can manage separate stacks. For

example for our kernel and for applications.

- Previous TSS links – Linking TSS is once again be helpful for task switching. When we have to

access another process with another privilege level we switch our TSS, fulfill our duty and

then switch back to the TSS of the task we came from.

Hint: All TSS are linked in the Task Register which is a special segment and can (only) partially been

accessed by programmers to read task information. You might know the Linux command “ps” which

shows all running processes including process ID. This application uses the TSS to determine

information on the different processes.

8.2 Local Descriptor Table

The LDT has almost the same structure as the GTD but it is process specific. This means through the

LDT we are able to give each process its own memory. The GTD has to contain an entry to the LDT

descriptor otherwise we will not be able to create a reference to it.

8.3 Call Gate

Call Gates are used to enable a process of a lower privilege level to execute code of a higher privilege

level. This is necessary to enable programmers later on to use kernel functions such as system calls. A

kernel mostly has a privilege level of 0 (the highest) and an application generally has a privilege level

of 3 (lowest).

Okay, now we know what the tasks of a GDT are. But how does it work? You can imagine the GDT as

a list of 64 bit entries. An entry contains the segment where the region we define starts, where it

ends and the privilege level a process has to have to access this segment. There privilege levels are

there to prevent the kernel to crash if an application tries to execute commands it is not supposed

to. A good example is “cli” and “sti” to forbid and allow interrupts. If an application tries to access

these commands in a non privileged sector an exception will be thrown.

The first entry (0) in the GDT is defined as the NULL descriptor. If a segment register is set to 0 it will

cause a General Protection Fault (See IRS13).

Image 5: Entry in the Global Descriptor Table

At first, I will define the fields in an entry:

Field Description

P (Present) Segment is present or not

DPL (XX Privilege Level) In which ring does the process have to be to

access this segment?

DT (Descriptor Type)

Type

G (Granularity) 0 = 1 byte, 1 = 4 kbytes

D (Operand size) 0 = 16 bit, 1 = 32 bit

0 Always 0

A (Available for system) Is Always set to 0.

Segment length Start and end of the segment

Table 3: GDT entry explanation

In our tutorial we will use a GDT with only three entries. The first one is the NULL descriptor, the first

one points to our code segment is and the second one tells the kernel where it can find the data

segment.

Create a new file called “gdt.c” and add the following code.

#include <system.h>

// This struct defines a GDT entry. Once again we d efine it
// as packed to keep the structure the CPU expects the
// entry to have. We do not want the compiler to op timize
// our code!
struct gdt_entry
{
 unsigned short limit_low ;
 unsigned short base_low ;
 unsigned char base_middle ;
 unsigned char access ;
 unsigned char granularity ;
 unsigned char base_high ;
} __attribute__ ((packed));

// The GDT pointer defines the range of our GDT in memory.
struct gdt_ptr
{
 unsigned short limit ;
 unsigned int base ;
} __attribute__ ((packed));

// The GDT with three entries and a pointer to our GDT.
struct gdt_entry gdt [3];
struct gdt_ptr gp ;

// This function is placed in start.asm.
extern void gdt_flush ();

// Put a descriptor in the GDT
void gdt_set_gate (int num, unsigned long base , unsigned long limit ,
unsigned char access , unsigned char gran)

{
 // The address of the descriptor
 gdt [num].base_low = (base & 0xFFFF);
 gdt [num].base_middle = (base >> 16) & 0xFF;
 gdt [num].base_high = (base >> 24) & 0xFF;

 // Limits of the descriptor
 gdt [num].limit_low = (limit & 0xFFFF);
 gdt [num].granularity = ((limit >> 16) & 0x0F);

 // Granularity and access flag
 gdt [num].granularity |= (gran & 0xF0);
 gdt [num].access = access ;
}

// Setup the GDT pointer and create the three entri es (gates) we
// want to use:
// 1: Null descriptor (See Tutorial)
// 2: Describes the code segment (Base address is 0 , limit is 4GBytes,
// use 4 KBytes granularity, 32bit coding and a Co de Segment
descriptor.
// 3: Data segment which is the same as the data se gment except the access
// flag which tells it is a data segment.
void gdt_install ()
{
 /* Setup the GDT pointer and limit */
 gp .limit = (sizeof(struct gdt_entry) * 3) - 1;
 gp .base = &gdt ;

 gdt_set_gate (0, 0, 0, 0, 0);
 gdt_set_gate (1, 0, 0xFFFFFFFF, 0x9A, 0xCF);
 gdt_set_gate (2, 0, 0xFFFFFFFF, 0x92 , 0xCF);

 // Flush the old GDT and install the new one. This code
 // can be found in start.asm.
 gdt_flush ();
}

Listing 25: The code of the Global Description Table in "gdt.c"

The code is pretty straight forward. We create a packed struct which contains all information on our

memory segment entry. Then we create a struct which is basically a pointer to the GDT. The function

“gdt_flush” will later on be placed in “start.asm” and flush the old GDT (which has been initialized by

the GRUB loader) and initialize our new GDT. Then we create a function to put an entry into the GDT

and finally we use an initialization function for the GDT which creates three entries:

- The NULL descriptor

- Entry for the code segment

- Entry for the data segment

Finally, the new GDT is installed. Therefore we add the following lines right behind “; Place holder for

GDT code” to “start.asm”.

; We set up the segment registers to point to our G DT.
; This will set up our new segment registers. We ne ed to do
; something special in order to set CS. We do what is called a
; far jump. A jump that includes a segment as well as an offset.

; This is declared in C as 'extern void gdt_flush() ;'
global _gdt_flush ; Allow to call _gdt_flush from anywhere
extern _gp ; Tells that _gp will be found outside start.asm (i n
gdt.c)
_gdt_flush :
 lgdt [_gp] ; Load the GDT with our '_gp' which is a special
pointer
 ; The brackets say that we pass a function,
not the content

 mov ax, 0x10 ; 0x10 is the offset in the GDT to our data segment
 mov ds, ax
 mov es, ax
 mov fs, ax
 mov gs, ax
 mov ss, ax
 jmp 0x08 :flush2 ; 0x08 is the offset to our code segment: Far jump!
flush2 :
 ret ; Get back to the C code after executing this one.

Listing 26: Installing the GDT in start.asm

Add the function prototypes to “system.h”.

/* GDT.C */
extern void gdt_set_gate (int num, unsigned long base , unsigned long limit ,
unsigned char access , unsigned char gran);
extern void gdt_install ();

Listing 27: Function prototypes for "gdt.c"

We are done so far, add “gdt_install” to our main function (as first line since this is an important one)

and run the OS. You will not see anything; this is only an internal (but nevertheless an important)

change.

Hint: You will see that we are still receiving output from the timer. Feel free to uncomment the line

from “timer.c”:

puts ("One second has passed\n");

9 Extended Output

We only wrote functions to output strings and chars which is was basic stuff to make quick progress

and keep you with me! But what if we want to put out other data types like integers or floats?

 To that point we did everything on our own. We did not use any libraries or external header files.

This will change from that point on since I cannot explain every single piece of code! This would

result in a ten thousand site tutorial and would surely get very confusing! Furthermore, I will not

explain as detailed as I did before since we are producing more and more code that appears

repeatedly. But no reason to panic! The constructs that serve the topic “Operating System

programming” will still be well commented and explained!

Create a new file “extio.c”. This file will add two new functions to print out strings that may contain

arguments.

// First include that we not write on our own
#include "stdarg.h"

// A temp char buffer
char _buffer [64];

// Returns the number representation of value "val" to the base "base".
static inline char *strfmtint (unsigned long val , int base)
{
 // We cannot have a base > 36
 if(base > 36)
 return "" ;

 // If the value is 0 the result is 0, too.
 if(val == 0)
 return "0" ;

 const char *digits = "0123456789abcdefghijklmnopqrstuvwxyz" ;
 char *p = _buffer + 64;

 int i = 0;
 *p = '\0' ;

 // Make each char of "val" fit into the base repres entation
 // we want. For example, a pointer (represented by a hex) has
 // a base of 16 and can therefore only be represent ed by 0-16 of
 // the char array.
 while(val)
 {
 *--p = digits [val % base];
 val /= base ;

 i ++;
 }

 return p ;
}

// Takes the format char array and browses it for " %"s which
// indicates that we have to replace the following char by
// a value from the argument list.
// The final string is the "str" parameter whereas the result
// is the number of written parameters.
int vsprintf (char *str , const char *format , va_list arg)
{
 int written = 0;

 // Iterate through the format char array
 while(*format != '\0')
 {
 // If we hit a "%" which is the indicator for a rep lacement
 if(*format == '%')
 {
 format ++;

 switch(*format)
 {
 // Is our parameter a char?
 case 'c' :
 {
 char temp = va_arg (arg , int);
 str [written] = temp ;

 }
 break;

 case 's' :
 {
 // Is our parameter a string?
 char *string = va_arg (arg , char *);

 while(*string != '\0')
 {
 str [written] = *string ;

 written ++;
 string ++;
 }

 str [written] = ' ' ;
 written --;
 }
 break;

 case 'i' :
 {
 // Is our parameter an integer?
 unsigned long temp = va_arg (arg , unsigned
long);
 char *string = strfmtint (temp,
10);

 while(*string != '\0')
 {
 str [written] = *string ;

 written ++;
 string ++;
 }

 str [written] = ' ' ;
 written --;
 }
 break;

 case 'p' :
 {
 // Is our parameter a pointer? //Return a
hexadecimal representation
 unsigned long temp = (unsigned
long)va_arg (arg , void *);
 char *string = strfmtint (temp,
16);

 str [written] = '0' ;
 written ++;

 str [written] = 'x' ;
 written ++;

 while(*string != '\0')
 {
 str [written] = *string ;

 written ++;
 string ++;
 }

 str [written] = ' ' ;
 written --;
 }
 break;

 case 'x' :
 {
 // Is our parameter a XX?
 unsigned long temp = va_arg (arg , unsigned
long);
 char *string = strfmtint (temp,
16);

 while(*string != '\0')
 {
 str [written] = *string ;

 written ++;
 string ++;
 }

 str [written] = ' ' ;
 written --;

 }
 break;

 case '%' :
 // Or do we really want to write a "%"?
 str [written] = '%' ;

 break;

 default:
 str [written] = '%' ;
 written ++;

 str [written] = *format ;
 break;
 }
 }
 else
 {
 str [written] = *format ;
 }

 written ++;
 format ++;
 }

 str [written] = '\0' ;
 // Return the numbers of written parameters
 return written ;
}

// Convers a format char array to a char array

int sprintf (char *dst , const char *format , ...)
{
 // Create an argument list
 va_list param ;
 // Put our arguments (format) into this argument li st
 va_start (param, format);

 // Converts the format string to a string
 int written = vsprintf (dst , format , param);

 // Close the argument list
 va_end (param);

 // Return the number of parameters written
 return written ;
}

// Our final function to simply put out a char arra y
// with arguments.
void putfs (const char *format , ...)
{
 // Once again read arguments, convert, ...
 // but this time we use "puts" to outpur the
 // string to our console.
 va_list param ;
 va_start (param, format);

 char temp [1024];
 vsprintf (temp, format , param);

 puts (temp);
 va_end (param);
}

Listing 28: "extio.c" for advanced output

Here the c code starts to get tricky since we use routines which are rarely used when writing

“normal” programs. These routines are, for example, to change the Zahlensystem of a variable in

“strfmtint” or to read argument lists from a function header with “va_list”, “va_start” and “va_end”.

Fortunately, we only have to understand three functions which serve one goal: To convert

parameters that have a format like:

(“My name is %s. I am %i years old.”, “Jonas”, “25”)

To a string like:

“My name is Jonas. I am 25 years old.”

Do not spend too much time on understanding each function in detail. This actually does not belong

to the functionality of an OS. Nevertheless, it is rather useful to print values to check if the

procedures we write work properly.

As usual, put the function header of of the “putfs” (which means “put formatted string”) into our

“system.h”. Feel free to add the following line to our main method:

putfs ("You are using %s in version %i." ,"JofreOS" ,1);

10 Paging

Now we are getting serious and start to make a plan to create kind of a file system. Paging is the first

step in the right direction because it enables us to virtualize our memory and throw memory

exceptions when a process tries to access memory that is locked or does not exist.

Let us create a simple application:

int main (char argc , char **argv)
{
 return 0;
}

Listing 29: A simple application

When you execute this program a start address will be set which identifies where the kernel has to

begin executing the code. Let us assume this address is at 0x20120A8 which is at ~32mb in the

address space. Why do you think a pc with less RAM will be able to execute this code without any

problems? Right, because the memory is virtualized by a paging mechanism. If the user or the kernel

tries accidently to access an unmapped part of memory the processor will raise a page fault

exception (We defined it already in the chapter on interrupts). But how can the processor know

about our paging routines? Fortunately, the x86 structure provides a basic functionality for memory

mapping which is placed in the Memory Management Unit (MMU) and helps us to create a layer

between the CPU and memory.

Paging works by splitting the virtual address space up by parts of 4 kb. Pages can then be mapped on

frames.

10.1 Page Entry

Each page has a size of 4 KB as well as a descriptor which shows which frame it is mapped to. Frames

and pages are aligned on 4KB boundaries (4kb = 1000bytes). The least 12 significant bits of the 32bit

word are always 0 which can be useful to save information on the page/frame in this address space.

This information should be illustrated by the following picture:

Image 6: Page Entry

- Frame address: As the name says the first 20 bits contain the physical address of the frame.

- Available: 3 unused bits which can be used by the kernel.

- Reserved: Internally used by the CPU.

- D (Dirty): The page has been written to.

- A (Accessed): Is set when the page has been accessed. This value is changed by the CPU.

- Reserved: 2 Bits which are used internally by the CPU.

- U/M: User mode or kernel mode page. User mode code cannot write to a kernel mode page.

- R/W: If this bit is set the page can be written to. If it is not set the page cannot be written to

unless code that runs in kernel mode wants to write to the page.

- P (Present): Says if the page is present in memory.

If you have used your calculator wisely you will have figured out that a for a memory size of 4GB we

need a mapping table of 4MB. The size of a table to store the page information will grow

proportionally with the size of the memory. Intel came up with an intelligent idea and invented a 2

component system. The CPU knows about a so called page directory which needs, once again, 4KB.

This page directory consists of n entries to page tables which might contain page table entries to

describe address space. If the page tables are empty the pointer to it will be freed and the entry is

being removed from the directory table by setting the present flag to 0.

10.2 Page faults

When a process accesses invalid memory areas the Memory Management Unit throws a page fault

exception (ISR14) (see chapter XX). These forbidden accesses are:

1. Reading from or writing to a memory area that is not mapped.

2. A process in user mode tries to write to a read only page.

3. A process in user mode tries to access a kernel only page.

4. A page table entry is corrupted – the reserved bits have been overwritten.

Remember that some interrupts push an error code on the stack? The page fault exception is one of

the exceptions that pass us information on what happened:

- Bit 0: If bit 0 is NOT set, the page was not present.

- Bit 1: If set, the operation which caused the fault was a write operation, otherwise it was a

read operation.

- Bit 2: If set, the process was running in user mode, else in kernel mode.

- Bit 3: If set, the exception was raised because reserved bits were overwritten.

- Bit 4: If set, the fault occurred during an instruction fetch.

Additionally, the processor saves the address that caused the exception to the second control

register.

To begin we need some memory functions which enable us to allocate memory before we can

allocate memory :-) The functions we declare at the beginning serve for the heap that we will

implement in the next chapter, too.

10.3 Adding a debugging function to extio.c

At the beginning we had full control over our OS. But now we implemented just another interrupt

which works, like his many siblings, on his own. The PIT does nothing else but running on his own. So

it is time to write a small function that holds the entire OS when an error occurs. This function we will

call “puterror”. It can easily be built by functions we already defined. Add this function to “extio.c”:

void puterror (const char *message, const char *file , int line)
{
 // We stop our entire OS
 asm volatile ("cli"); // Disable interrupts.
 settextcolor (15,4);
 putfs ("Error: (\n %s\n) at %s: %i\n" ,message,file ,line);
 // Halt the OS
 for(;;);
}

Listing 30: The error function "puterror" in extio.c

A very handy feature of GCC is that its pre-compiler can determine the file name and the line number

of the line it currently parses. This allows us to create the following define in “system.h”:

#define PUTERROR(msg) puterror(msg, __FILE__, __LIN E__);

Listing 31: Define to automatically find source file and line number

Add "extern void puterror (const char *message, const char *file , int line);”

to “system.h” as usual.

No you can use either “puterror” with one parameter and let the compiler find the source file and

line number of the error. Or you use the function with three parameters and insert source file and

line number manually.

To be continued…

Literature

http://www.jamesmolloy.co.uk/tutorial_html/index.html

https://github.com/JustSid/NANOS

http://www.ba-horb.de/~pl/BS_Skript/node1.html

http://www.osdever.net/bkerndev/Docs/title.htm

http://www.lowlevel.eu/wiki/Hauptseite

http://www.beyondlogic.org/

